401. Local quaternionic rigidity for complex hyperbolic lattices
- Author
-
Bruno Klingler, Inkang Kim, Pierre Pansu, School of Mathematics (KIAS), Korean Institute for Advanced Study, Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institute for Advanced Study (IAS), Institute for Advanced Study [Princeton] (IAS), Laboratoire de Mathématiques d'Orsay (LM-Orsay), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,quaternion ,General Mathematics ,Group cohomology ,53C43 ,Kähler manifold ,01 natural sciences ,53C24 ,superrigidity ,Combinatorics ,Morphism ,group cohomology ,Cup product ,Lattice (order) ,0103 physical sciences ,FOS: Mathematics ,simple Lie group ,Hodge theory ,quaternionic hyperbolic space ,20G20 ,0101 mathematics ,Mathematics ,lattice ,Simple Lie group ,vanishing theorem ,14D07 ,010102 general mathematics ,Lie group ,53C55 ,53C35 ,53C26 ,Differential Geometry (math.DG) ,rigidity ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,32L20 ,20G10 ,010307 mathematical physics ,complex hyperbolic space ,cup-product - Abstract
Let $\Gamma \stackrel{i}{\hookrightarrow} L$ be a lattice in the real simple Lie group $L$. If $L$ is of rank at least 2 (respectively locally isomorphic to $Sp(n,1)$) any unbounded morphism $\rho: \Gamma \longrightarrow G$ into a simple real Lie group $G$ essentially extends to a Lie morphism $\rho_L: L \longrightarrow G$ (Margulis's superrigidity theorem, respectively Corlette's theorem). In particular any such morphism is infinitesimally, thus locally, rigid. On the other hand, for $L=SU(n,1)$, even morphisms of the form $\rho : \Gamma \stackrel{i}{\hookrightarrow} L \longrightarrow G$ are not infinitesimally rigid in general. Almost nothing is known about their local rigidity. In this paper we prove that any {\em cocompact} lattice $\Gamma$ in SU(n,1) is essentially locally rigid (while in general not infinitesimally rigid) in the quaternionic groups $Sp(n,1)$, SU(2n,2) or SO(4n,4) (for the natural sequence of embeddings $SU(n,1) \subset Sp(n,1) \subset SU(2n,2) \subset SO(4n,4))$., Comment: 24 pages
- Published
- 2011
- Full Text
- View/download PDF