Zhuye Jie, Chen Chen, Lilan Hao, Fei Li, Liju Song, Xiaowei Zhang, Jie Zhu, Liu Tian, Xin Tong, Kaiye Cai, Zhe Zhang, Yanmei Ju, Xinlei Yu, Ying Li, Hongcheng Zhou, Haorong Lu, Xuemei Qiu, Qiang Li, Yunli Liao, Dongsheng Zhou, Heng Lian, Yong Zuo, Xiaomin Chen, Weiqiao Rao, Yan Ren, Yuan Wang, Jin Zi, Rong Wang, Na Liu, Jinghua Wu, Wei Zhang, Xiao Liu, Yang Zong, Weibin Liu, Liang Xiao, Yong Hou, Xun Xu, Huanming Yang, Jian Wang, Karsten Kristiansen, and Huijue Jia
The vagina contains at least a billion microbial cells, dominated by lactobacilli. Here we perform metagenomic shotgun sequencing on cervical and fecal samples from a cohort of 516 Chinese women of reproductive age, as well as cervical, fecal, and salivary samples from a second cohort of 632 women. Factors such as pregnancy history, delivery history, cesarean section, and breastfeeding were all more important than menstrual cycle in shaping the microbiome, and such information would be necessary before trying to interpret differences between vagino-cervical microbiome data. Greater proportion of Bifidobacterium breve was seen with older age at sexual debut. The relative abundance of lactobacilli especially Lactobacillus crispatus was negatively associated with pregnancy history. Potential markers for lack of menstrual regularity, heavy flow, dysmenorrhea, and contraceptives were also identified. Lactobacilli were rare during breastfeeding or post-menopause. Other features such as mood fluctuations and facial speckles could potentially be predicted from the vagino-cervical microbiome. Gut and salivary microbiomes, plasma vitamins, metals, amino acids, and hormones showed associations with the vagino-cervical microbiome. Our results offer an unprecedented glimpse into the microbiota of the female reproductive tract and call for international collaborations to better understand its long-term health impact other than in the settings of infection or pre-term birth.