351. Sparsity-based restoration of SMOS images in the presence of outliers
- Author
-
Pablo Musé, Ali Khazaal, B. Rouge, Javier Preciozzi, Andrés Almansa, Sylvain Durand, Yann Kerr, Francois Cabot, Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Instituto de Ingeniería Eléctrica (IIE), Universidad de la República [Montevideo] (UCUR), Instituto de Computacion [Montevideo] (INCO), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Instituto de Ingeniería Eléctrica ( IIE ), Universidad de la República, Instituto de Computacion [Montevideo] ( INCO ), Universidad de la República [Montevideo] ( UCUR ), Centre d'études spatiales de la biosphère ( CESBIO ), Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National d'Etudes Spatiales ( CNES ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), and Durand, Sylvain
- Subjects
Brightness ,[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing ,Computer science ,Aperture synthesis ,0211 other engineering and technologies ,02 engineering and technology ,[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing ,Physics::Geophysics ,symbols.namesake ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0202 electrical engineering, electronic engineering, information engineering ,Water content ,Image restoration ,ComputingMilieux_MISCELLANEOUS ,021101 geological & geomatics engineering ,Remote sensing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing ,Salinity ,Interferometry ,13. Climate action ,Gaussian noise ,Brightness temperature ,Outlier ,symbols ,020201 artificial intelligence & image processing ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
Estimates of soil moisture and surface salinity are of significant importance to improve meteorological and climate prediction. The SMOS mission monitor these quantities, by measuring the brightness temperature by means of L-band aperture synthesis interferometry. Despite the L-band being reserved for Earth and space exploration, SMOS images reveal large number of strong outliers, produced by illegal antennas emitting in this band. In this work we propose a variational approach to recover a super-resolved, denoised brightness temperature map. The measurements are modeled as the superposition of three super-resolved components in the spatial domain: the target brightness temperature map u, an image o modeling the outliers, and Gaussian noise n. This decomposition allows to isolate each of its constituent parts, thanks to a sparsity operator that acts on o, and a bounded variation prior on u that extrapolates its spectrum promoting a non-oscillating behavior. The proposed model is interesting in itself, as it is general enough to be applied to other restoration problems. Experiments on real and synthetic data confirm the suitability of the proposed approach.
- Published
- 2012