251. Slow interfacial reamorphization of Ge films melted by ps laser pulses
- Author
-
Siegel, Jan, Solís Céspedes, Javier, Afonso, Carmen N., Siegel, Jan, Solís Céspedes, Javier, and Afonso, Carmen N.
- Abstract
Melting and rapid solidification is induced in 50-nm-thick amorphous Ge films on glass substrates by single laser pulses at 583 nm with a duration of 10 ps. The solidification process is followed by means of reflectivity measurements with ns time resolution both at the air/film (front) and the substrate/film (back) interfaces. Due to interference effects between the light reflected at the film-substrate and film-liquid interfaces, the back side reflectivity measurements turn out to be very sensitive to the melt depth induced by the laser pulse and their comparison to optical simulations enables the determination of the solidification dynamics. For low fluences, only a thin layer of the film is melted and solidification occurs interfacially leading to reamorphization of the molten material. The results provide a critical interface velocity for amorphization of ∼4 m/s, much slower than the one that has widely been reported for elementary semiconductors. For high fluences, the molten layer depth approaches the film thickness and the results are consistent with a bulk solidification process. In this case, recalescence effects upon solid phase nucleation become important and lead to the formation of crystallites distributed throughout the whole resolidified volume. © 1998 American Institute of Physics.
- Published
- 1998