201. Aging Considerations in the Development of Time-Dependent Seismic Fragility Curves.
- Author
-
Ghosh, Jayadipta and Padgett, Jamie E.
- Subjects
- *
BRIDGES , *REINFORCED concrete , *CONCRETE columns , *EARTHQUAKE resistant design , *CURVES , *CONCRETE construction - Abstract
This paper presents the formulation of a time-dependent seismic fragility format for bridges, as well as new insights into the potential effects of aging and deterioration on seismic vulnerability traditionally neglected in fragility modeling, including joint impacts of multiple component deterioration not investigated to date. The study evaluates the impact of lifetime exposure to chlorides from deicing salts on the seismic performance of multispan continuous highway bridges, considering corrosion of reinforced concrete columns and steel bridge bearings. The components' degradation and their influence on seismic response are illustrated through three-dimensional nonlinear dynamic analysis. A full probabilistic analysis accounting for variation in bridge, ground motion, and corrosion parameters is conducted to develop time-dependent seismic fragility curves. These fragility curves indicate the evolving potential for component and system damage under seismic loading considering time-dependent corrosion-induced deterioration. The results indicate that while corrosion may actually decrease the seismic vulnerability of some components, most critical components suffer an increase in vulnerability. Quadratic models depicting the change in lognormal seismic fragility parameters are proposed to capture the time-dependent effect of aging on the fragility of the bridge system. Overall, the seismic vulnerability significantly increases throughout the lifetime of the representative bridge geometry, with a 32% shift in the median value of complete damage fragility near the end of the bridge's life. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF