232 results on '"Nikkel, J"'
Search Results
202. Atomic tritium: Phase IV of project 8
- Author
-
Lindman, A., Esfahani, A. A., Bansal, V., Böser, S., Buzinsky, N., Claessens, C., Cervantes, R., Luiz de Viveiros, Doe, P. J., Doeleman, S., Fertl, M., Finn, E. C., Formaggio, J. A., Gladstone, L., Guigue, M., Heeger, K. M., Johnston, J. P., Jones, A. M., Kazkaz, K., Laroque, B. H., Machado, E., Monreal, B., Nikkel, J. A., Novitski, E., Oblath, N. S., Pettus, W., Robertson, R. G. H., Rosenberg, L. J., Rybka, G., Saldaña, L., Schram, M., Sibille, V., Slocum, P. L., Sun, Y. -H, Tedeschi, J. R., Thümmler, T., Vandevender, B. A., Wachtendonk, M., Walter, M., Weintroub, J., Wendler, T., Young, A., and Zayas, E.
203. Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8
- Author
-
Esfahani, A Ashtari, Böser, S, Buzinsky, N, Cervantes, R, Claessens, C, Viveiros, L De, Fertl, M, Formaggio, J A, Gladstone, L, Guigue, M, Heeger, K M, Johnston, J, Jones, A M, Kazkaz, K, LaRoque, B H, Lindman, A, Machado, E, Monreal, B, Morrison, E C, Nikkel, J A, Novitski, E, Oblath, N S, Pettus, W, Robertson, R G H, Rybka, G, Saldaña, L, Sibille, V, Schram, M, Slocum, P L, Sun, Y-H, Thümmler, T, VanDevender, B A, Weiss, T E, Wendler, T, and Zayas, E
- Subjects
3. Good health - Abstract
The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8measures electromagnetic radiation fromindividual electrons gyrating in a backgroundmagnetic field to construct a highly precise energy spectrumfor beta decay studies and other applications. The detector,magnetic trap geometry and electron dynamics give rise to amultitude of complex electron signal structures which carry information about distinguishing physical traits.Withmachine learningmodels, we develop a scheme based on these traits to analyze and classifyCRES signals. Proper understanding and use of these traits will be instrumental to improve cyclotron frequency reconstruction and boost the potential of Project 8 to achieveworld-leading sensitivity on the tritiumendpointmeasurement in the future.
204. High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data
- Author
-
Adams, D. Q., Alduino, C., Alfonso, K., Avignone, Iii F. T., Azzolini, O., Bari, G., Fabio Bellini, Benato, G., Beretta, M., Biassoni, M., Branca, A., Brofferio, C., Bucci, C., Camilleri, J., Caminata, A., Campani, A., Canonica, L., Cao, X. G., Capelli, S., Cappelli, L., Cardani, L., Carniti, P., Casali, N., Celi, E., Chiesa, D., Clemenza, M., Copello, S., Cremonesi, O., Creswick, R. J., D Addabbo, A., Dafinei, I., Oro, S., Di Domizio, S., Dompè, V., Fang, D. Q., Fantini, G., Faverzani, M., Ferri, E., Ferroni, F., Fiorini, E., Franceschi, M. A., Freedman, S. J., Fu, S. H., Fujikawa, B. K., Giachero, A., Gironi, L., Giuliani, A., Gorla, P., Gotti, C., Gutierrez, T. D., Han, K., Hansen, E. V., Heeger, K. M., Huang, R. G., Huang, H. Z., Johnston, J., Keppel, G., Kolomensky, Yu G., Ligi, C., Liu, R., Ma, L., Ma, Y. G., Marini, L., Maruyama, R. H., Mayer, D., Mei, Y., Moggi, N., Morganti, S., Napolitano, T., Nastasi, M., Nikkel, J., Nones, C., Norman, E. B., Nucciotti, A., Nutini, I., O Donnell, T., Ouellet, J. L., Pagan, S., Pagliarone, C. E., Pagnanini, L., Pallavicini, M., Pattavina, L., Pavan, M., Pessina, G., Pettinacci, V., Pira, C., Pirro, S., Pozzi, S., Previtali, E., Puiu, A., Rosenfeld, C., Rusconi, C., Sakai, M., Sangiorgio, S., Schmidt, B., Scielzo, N. D., Sharma, V., Singh, V., Sisti, M., Speller, D., Surukuchi, P. T., Taffarello, L., Terranova, F., Tomei, C., Vetter, K. J., Vignati, M., Wagaarachchi, S. L., Wang, B. S., Welliver, B., Wilson, J., Wilson, K., Winslow, L. A., Zimmermann, S., Zucchelli, S., Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and CUORE
- Subjects
leptogenesis ,cosmological model ,data analysis method ,CUORE ,solid-state counter ,particle: Majorana ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,computer: quantum ,dark matter ,energy: transition ,double-beta decay: (0neutrino) ,detector: calibration ,tellurium: nuclide ,matter: antimatter ,antimatter: asymmetry - Abstract
Despite being the feeblest and lightest of the known particles, the neutrino is one of the most abundant particles in the Universe and has played a critical role in its evolution. Within standard cosmological models, most of the neutrinos were produced in the Big Bang and completely decoupled from matter after the first second. During that short time it is possible that through the process of Leptogenesis neutrinos helped to produce the matter/anti-matter asymmetry that sets the stage for all of the structures that we see in the universe today. However, these theories generally require the condition that the neutrino is a so-called Majorana particle, acting as its own anti-particle. The search for the extremely rare neutrinoless double-beta $(0\nu\beta\beta)$ decay is currently the most practical way to address this question. Here we present the results of the first tonne-year exposure search for $0\nu\beta\beta$ decay of $^{130}$Te with CUORE. With a median half-life exclusion sensitivity of $2.8\times10^{25}$ yr, this is the most sensitive search for $0\nu\beta\beta$ decay in $^{130}$Te to date. We find no evidence for $0\nu\beta\beta$ decay and set a lower bound of $T_{1/2} > 2.2\times10^{25}$ yr at a 90% credibility interval. CUORE is the largest, coldest solid-state detector operating below 100mK in the world. The achievement of 1 tonne-year of exposure demonstrates the long-term reliability and potential of cryogenic technology at this scale, with wide ranging applications to next-generation rare-event searches, dark matter searches, and even large-scale quantum computing.
205. CUORE opens the door to tonne-scale cryogenics experiments
- Author
-
L. Canonica, L. Marini, Kevin Hickerson, J. Schmidt, Massimiliano Clemenza, Carlo Cosmelli, S. Copello, L. Gladstone, M. Guerzoni, L. Ma, J. Johnston, A. Leder, M. Iannone, Irene Nutini, Paolo Carniti, Vladimir Datskov, R. J. Creswick, M. M. Deninno, G. Fantini, F. Bellini, I. C. Bandac, Yu-Gang Ma, D. Santone, V. Sharma, C. Brofferio, P. J. Mosteiro, A. Caminata, Ezio Previtali, B. Welliver, Evelyn Ferri, H. Z. Huang, G. Keppel, K. E. Lim, X. G. Cao, F. Bragazzi, Ettore Fiorini, V. Novati, C. Rusconi, N. Chott, T. Wise, C. Crescentini, R. Gaigher, L. Zanotti, Andrea Giachero, C. Maiano, N. Moggi, C. Martinez Amaya, S. S. Nagorny, A. Pelosi, G. Piperno, D. Q. Adams, L. Risegari, K. Alfonso, F. Terranova, Davide Chiesa, C. Rosenfeld, Deqing Fang, S. Pagan, S. Dell'Oro, M. L. Di Vacri, D. Mayer, Samuele Sangiorgio, Stefano Nisi, P. T. Surukuchi, S. Morganti, S. Zucchelli, J. Camilleri, A. Nucciotti, M. Sisti, P. Gorla, E. V. Hansen, F. Ferroni, C. Tomei, Elena Sala, L. Ioannucci, D. Speller, F. Alessandria, M. I. Martínez, Eugene E. Haller, C. Alduino, F. Rimondi, G. Ceruti, K. Wilson, L. Taffarello, Marisa Pedretti, R. Hennings-Yeomans, S. Pirro, Carlo Ligi, M. Faverzani, M. Beretta, Y. Mei, M. Tessaro, Jeffrey W. Beeman, M. Capodiferro, A. Bersani, N. D. Scielzo, M. Barucci, L. Cappelli, D. Biare, C. J. Davis, A. Camacho, Jonathan Ouellet, D. Conventi, J. Wallig, K. M. Heeger, L. Pagnanini, A. Giuliani, G. Bari, M. Cariello, Lindley Winslow, A. Campani, S. L. Wagaarachchi, M. Maino, Guoqiang Zhang, M. Carrettoni, R. Mazza, A. Branca, A. Bryant, J. Nikkel, C. Pira, H.W. Wang, M. Perego, T. I. Banks, S. Zimmermann, Ke Han, Reina H. Maruyama, S. Ghislandi, T. O'Donnell, S. Di Domizio, Simone Capelli, R. W. Kadel, Stuart J. Freedman, G. Ventura, A. Drobizhev, C. Bulfon, C. Zarra, Laura Cardani, V. Dompè, M. Balata, L. Di Paolo, A. D'Addabbo, L. Pattavina, B. K. Fujikawa, Stefano Pozzi, Alan R. Smith, D. Orlandi, Larissa M. Ejzak, M. Vignati, B. X. Zhu, V. Pettinacci, L. Kogler, E. Celi, L. Tatananni, S.H. Fu, E. Andreotti, M. A. Franceschi, R. Cereseto, I. Dafinei, M. Sakai, D. D'Aguanno, F. Stivanello, R. G. Huang, D. Schaeffer, C. Guandalini, F. Orio, Vasundhara Singh, B. Schmidt, B. S. Wang, O. Azzolini, Kai Vetter, M. Olcese, Jeremy S. Cushman, V. Palmieri, Eric B. Norman, M. Guetti, T. Napolitano, M. Biassoni, F. Del Corso, R. Faccini, Giovanni Benato, A. Buccheri, C. Salvioni, Yu. G. Kolomensky, R. Pedrotta, Lorenzo Cassina, C. Nones, A. Puiu, Marco Pallavicini, S. Quitadamo, G. Pessina, James R. Wilson, R. Liu, Massimiliano Nastasi, M. Pavan, E. Olivieri, L. Gironi, F. T. Avignone, Claudio Gotti, N. Casali, F. Reindl, Oliviero Cremonesi, J. Goett, M. Tenconi, C. Pagliarone, C. Rossi, A. Chiarini, C. Bucci, T. D. Gutierrez, Adams, D, Alduino, C, Alessandria, F, Alfonso, K, Andreotti, E, Avignone, F, Azzolini, O, Balata, M, Bandac, I, Banks, T, Bari, G, Barucci, M, Beeman, J, Bellini, F, Benato, G, Beretta, M, Bersani, A, Biare, D, Biassoni, M, Bragazzi, F, Branca, A, Brofferio, C, Bryant, A, Buccheri, A, Bucci, C, Bulfon, C, Camacho, A, Camilleri, J, Caminata, A, Campani, A, Canonica, L, Cao, X, Capelli, S, Capodiferro, M, Cappelli, L, Cardani, L, Cariello, M, Carniti, P, Carrettoni, M, Casali, N, Cassina, L, Celi, E, Cereseto, R, Ceruti, G, Chiarini, A, Chiesa, D, Chott, N, Clemenza, M, Conventi, D, Copello, S, Cosmelli, C, Cremonesi, O, Crescentini, C, Creswick, R, Cushman, J, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Datskov, V, Davis, C, Corso, F, Dell'Oro, S, Deninno, M, Di Domizio, S, Dompe, V, Di Vacri, M, Di Paolo, L, Drobizhev, A, Ejzak, L, Faccini, R, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fu, S, Fujikawa, B, Gaigher, R, Ghislandi, S, Giachero, A, Gironi, L, Giuliani, A, Gladstone, L, Goett, J, Gorla, P, Gotti, C, Guandalini, C, Guerzoni, M, Guetti, M, Gutierrez, T, Haller, E, Han, K, Hansen, E, Heeger, K, Hennings-Yeomans, R, Hickerson, K, Huang, R, Huang, H, Iannone, M, Ioannucci, L, Johnston, J, Kadel, R, Keppel, G, Kogler, L, Kolomensky, Y, Leder, A, Ligi, C, Lim, K, Liu, R, Ma, L, Ma, Y, Maiano, C, Maino, M, Marini, L, Martinez, M, Amaya, C, Maruyama, R, Mayer, D, Mazza, R, Mei, Y, Moggi, N, Morganti, S, Mosteiro, P, Nagorny, S, Napolitano, T, Nastasi, M, Nikkel, J, Nisi, S, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Olcese, M, Olivieri, E, Orio, F, Orlandi, D, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pedretti, M, Pedrotta, R, Pelosi, A, Perego, M, Pessina, G, Pettinacci, V, Piperno, G, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Quitadamo, S, Reindl, F, Rimondi, F, Risegari, L, Rosenfeld, C, Rossi, C, Rusconi, C, Sakai, M, Sala, E, Salvioni, C, Sangiorgio, S, Santone, D, Schaeffer, D, Schmidt, B, Schmidt, J, Scielzo, N, Sharma, V, Singh, V, Sisti, M, Smith, A, Speller, D, Stivanello, F, Surukuchi, P, Taffarello, L, Tatananni, L, Tenconi, M, Terranova, F, Tessaro, M, Tomei, C, Ventura, G, Vetter, K, Vignati, M, Wagaarachchi, S, Wallig, J, Wang, B, Wang, H, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Wise, T, Zanotti, L, Zarra, C, Zhang, G, Zhu, B, Zimmermann, S, Zucchelli, S, Adams D.Q., Alduino C., Alessandria F., Alfonso K., Andreotti E., Avignone F.T., Azzolini O., Balata M., Bandac I., Banks T.I., Bari G., Barucci M., Beeman J.W., Bellini F., Benato G., Beretta M., Bersani A., Biare D., Biassoni M., Bragazzi F., Branca A., Brofferio C., Bryant A., Buccheri A., Bucci C., Bulfon C., Camacho A., Camilleri J., Caminata A., Campani A., Canonica L., Cao X.G., Capelli S., Capodiferro M., Cappelli L., Cardani L., Cariello M., Carniti P., Carrettoni M., Casali N., Cassina L., Celi E., Cereseto R., Ceruti G., Chiarini A., Chiesa D., Chott N., Clemenza M., Conventi D., Copello S., Cosmelli C., Cremonesi O., Crescentini C., Creswick R.J., Cushman J.S., D'Addabbo A., D'Aguanno D., Dafinei I., Datskov V., Davis C.J., Del Corso F., Dell'Oro S., Deninno M.M., Di Domizio S., Dompe V., Di Vacri M.L., Di Paolo L., Drobizhev A., Ejzak L., Faccini R., Fang D.Q., Fantini G., Faverzani M., Ferri E., Ferroni F., Fiorini E., Franceschi M.A., Freedman S.J., Fu S.H., Fujikawa B.K., Gaigher R., Ghislandi S., Giachero A., Gironi L., Giuliani A., Gladstone L., Goett J., Gorla P., Gotti C., Guandalini C., Guerzoni M., Guetti M., Gutierrez T.D., Haller E.E., Han K., Hansen E.V., Heeger K.M., Hennings-Yeomans R., Hickerson K.P., Huang R.G., Huang H.Z., Iannone M., Ioannucci L., Johnston J., Kadel R., Keppel G., Kogler L., Kolomensky Y.G., Leder A., Ligi C., Lim K.E., Liu R., Ma L., Ma Y.G., Maiano C., Maino M., Marini L., Martinez M., Amaya C.M., Maruyama R.H., Mayer D., Mazza R., Mei Y., Moggi N., Morganti S., Mosteiro P.J., Nagorny S.S., Napolitano T., Nastasi M., Nikkel J., Nisi S., Nones C., Norman E.B., Novati V., Nucciotti A., Nutini I., O'Donnell T., Olcese M., Olivieri E., Orio F., Orlandi D., Ouellet J.L., Pagan S., Pagliarone C.E., Pagnanini L., Pallavicini M., Palmieri V., Pattavina L., Pavan M., Pedretti M., Pedrotta R., Pelosi A., Perego M., Pessina G., Pettinacci V., Piperno G., Pira C., Pirro S., Pozzi S., Previtali E., Puiu A., Quitadamo S., Reindl F., Rimondi F., Risegari L., Rosenfeld C., Rossi C., Rusconi C., Sakai M., Sala E., Salvioni C., Sangiorgio S., Santone D., Schaeffer D., Schmidt B., Schmidt J., Scielzo N.D., Sharma V., Singh V., Sisti M., Smith A.R., Speller D., Stivanello F., Surukuchi P.T., Taffarello L., Tatananni L., Tenconi M., Terranova F., Tessaro M., Tomei C., Ventura G., Vetter K.J., Vignati M., Wagaarachchi S.L., Wallig J., Wang B.S., Wang H.W., Welliver B., Wilson J., Wilson K., Winslow L.A., Wise T., Zanotti L., Zarra C., Zhang G.Q., Zhu B.X., Zimmermann S., Zucchelli S., Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and CUORE
- Subjects
Cryostat ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Cryogenic temperatures ,Dilution refrigerator ,Low temperature calorimeter ,Neutrinoless double beta decay ,Rare event searches ,Ton-scale detector ,Cryogenic temperatures, Neutrinoless double beta decay, Dilution refrigerator, Ton-scale detector, Low temperature calorimeter, Rare event searches, cryogenics, CUORE performance ,Cryogenics ,Rare event searche ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,CUORE ,double-beta decay: (0neutrino) ,Double beta decay ,0103 physical sciences ,Cryogenic particle detectors ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,Aerospace engineering ,010306 general physics ,Nuclear Experiment ,activity report ,Physics ,010308 nuclear & particles physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cryogenic temperature ,Instrumentation and Detectors (physics.ins-det) ,CUORE performance ,Semiconductor detector ,cryogenics: design ,cryogenics ,Neutrino ,business ,performance - Abstract
The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined., Comment: 45 pages, 14 figures
- Published
- 2022
- Full Text
- View/download PDF
206. Characterization of cubic Li 2100 MoO 4 crystals for the CUPID experiment
- Author
-
Federico Ferri, Stefano Dell'Oro, J. Camilleri, V. Shlegel, N. Casali, R. Rizzoli, F. Bellini, A. Ressa, J. A. Scarpaci, C. Augier, Goran Karapetrov, G. Fantini, P. Gras, M. I. Martínez, F.A. Danevich, L. Pagnanini, P. T. Surukuchi, A. Drobizhev, S. H. Fu, C. Oriol, I. Dafinei, T. O'Donnell, E. Figueroa-Feliciano, P. Loaiza, Jie Yang, S. Copello, Haiping Peng, Oliviero Cremonesi, L. Wang, A. Franceschi, C. Pagliarone, Davide Chiesa, Paolo Carniti, A. Juillard, Andrea Barresi, V.I. Tretyak, E. V. Hansen, M. Xue, S. Zucchelli, C. Pira, O. G. Polischuk, X. F. Navick, R. J. Creswick, L. Marini, K. Wilson, I. Colantoni, D. Misiak, C. Rusconi, J. Billard, D. V. Poda, J. Johnston, Jonathan Ouellet, A. Charrier, A. Cruciani, S. L. Wagaarachchi, G. Bari, F. Collamati, V. Yumatov, J. Gascon, C. C. Chang, Stefano Nisi, Changbo Fu, G. Pessina, S. Pirro, L. Pattavina, S. Marnieros, Jie Zhang, G. Wang, G. D'Imperio, A. Cazes, Yuting Liu, E. Celi, Massimiliano Clemenza, A. Tsymbaliuk, Monica Sisti, Valentyn Novosad, I. Nutini, S. Milana, R. Nipoti, C. Nones, A. Puiu, M. Chapellier, H. Z. Huang, V. G. Yefremenko, R. Mariam, B. Schmidt, G. Keppel, Yu. G. Kolomensky, Luigi Cappelli, D. Mayer, O. Tellier, L. Ma, Y. Mei, R. G. Huang, F. Mancarella, M. Faverzani, L. Dumoulin, M. Madhukuttan, H. Khalife, M. Gros, Kai Vetter, S. Di Domizio, D. Baudin, P. Pari, A. Armatol, Giovanni Benato, M. Beretta, Tomas Polakovic, L. Taffarello, Virendra Singh, Danielle Speller, Laura Cardani, K. M. Heeger, B. K. Fujikawa, E. Olivieri, Eric B. Norman, L. Yan, T. Napolitano, S. Pagan, M. Biassoni, B. Mauri, V. Pettinacci, M. de Combarieu, O. Azzolini, M. M. Zarytskyy, A. Giachero, Claudio Gotti, S. I. Konovalov, L. Gironi, Lindley Winslow, M. Pavan, James Nikkel, F. T. Avignone, Whitney Armstrong, V. Sanglard, L. Imbert, C. Bucci, T. D. Gutierrez, C. Brofferio, A. S. Barabash, Ezio Previtali, B. Welliver, P. de Marcillac, D. L. Helis, A. S. Zolotarova, Ke Han, Reina H. Maruyama, B. Paul, A. Giuliani, Silvia Capelli, Massimiliano Nastasi, James R. Wilson, M. De Jesus, E. Armengaud, V. Sharma, Matias Velázquez, V. V. Kobychev, L. Bergé, A. Branca, C. Rosenfeld, V. Boldrini, P. Gorla, F. Ferroni, C. Tomei, Emanuele Ferri, Joseph A. Formaggio, S. Pozzi, V. Dompè, A. D'Addabbo, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), CUPID, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Armatol A., Armengaud E., Armstrong W., Augier C., Avignone F.T., Azzolini O., Barabash A., Bari G., Barresi A., Baudin D., Bellini F., Benato G., Beretta M., Berge L., Biassoni M., Billard J., Boldrini V., Branca A., Brofferio C., Bucci C., Camilleri J., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cazes A., Celi E., Chang C., Chapellier M., Charrier A., Chiesa D., Clemenza M., Colantoni I., Collamati F., Copello S., Cremonesi O., J.Creswick R., Cruciani A., D'Addabbo A., D'Imperio G., Dafinei I., A.Danevich F., deCombarieu M., DeJesus M., deMarcillac P., Dell'Oro S., DiDomizio S., Dompe V., Drobizhev A., Dumoulin L., Fantini G., Faverzani M., Ferri E., Ferri F., Ferroni F., Figueroa-Feliciano E., Formaggio J., Franceschi A., Fu C., Fu S., Fujikawa B.K., Gascon J., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gras P., Gros M., Gutierrez T.D., Han K., Hansen E.V., Heeger K.M., Helis D.L., Huang H.Z., Huang R.G., Imbert L., Johnston J., Juillard A., Karapetrov G., Keppel G., Khalife H., Kobychev V.V., Kolomensky Y.G., Konovalov S., Liu Y., Loaiza P., Ma L., Madhukuttan M., Mancarella F., Mariam R., Marini L., Marnieros S., Martinez M., Maruyama R.H., Mauri B., Mayer D., Mei Y., Milana S., Misiak D., Napolitano T., Nastasi M., Navick X.F., Nikkel J., Nipoti R., Nisi S., Nones C., Norman E.B., Novosad V., Nutini I., O'Donnell T., Olivieri E., Oriol C., Ouellet J.L., Pagan S., Pagliarone C., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pettinacci V., Pira C., Pirro S., V.Poda D., Polakovic T., Polischuk O.G., Pozzi S., Previtali E., Puiu A., Ressa A., Rizzoli R., Rosenfeld C., Rusconi C., Sanglard V., Scarpaci J.A., Schmidt B., Sharma V., Shlegel V., Singh V., Sisti M., Speller D., Surukuchi P.T., Taffarello L., Tellier O., Tomei C., Tretyak V.I., Tsymbaliuk A., Velazquez M., Vetter K.J., Wagaarachchi S.L., Wang G., Wang L., Welliver B., Wilson J., Wilson K., Winslow L.A., Xue M., Yan L., Yang J., Yefremenko V., Yumatov V., Zarytskyy M.M., Zhang J., Zolotarova A., Zucchelli S., Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone, F, Azzolini, O, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cremonesi, O, J. Creswick, R, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, A. Danevich, F, Decombarieu, M, Dejesus, M, Demarcillac, P, Dell'Oro, S, Didomizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fantini, G, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Figueroa-Feliciano, E, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, B, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, V, Kolomensky, Y, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, R, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, X, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, E, Novosad, V, Nutini, I, O'Donnell, T, Olivieri, E, Oriol, C, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, V. Poda, D, Polakovic, T, Polischuk, O, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Rizzoli, R, Rosenfeld, C, Rusconi, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Tellier, O, Tomei, C, Tretyak, V, Tsymbaliuk, A, Velazquez, M, Vetter, K, Wagaarachchi, S, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, M, Zhang, J, Zolotarova, A, and Zucchelli, S
- Subjects
Mo-100 ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,background: induced ,Physics::Instrumentation and Detectors ,Monte Carlo method ,measurement methods ,bolometers, neutrinoless double beta decay ,energy resolution ,Parameter space ,01 natural sciences ,Nuclear Experiment (nucl-ex) ,Double Beta Decay ,Nuclear Experiment ,background: suppression ,Physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,molybdenum: oxygen ,Double-beta decay detector ,Low Temperature Detector ,lithium ,Scintillation counter ,Neutrino ,photon: yield ,numerical calculations: Monte Carlo ,bolometers ,FOS: Physical sciences ,Cryogenic detector ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,neutrinoless double beta decay ,Particle identification method ,double-beta decay: (0neutrino) ,Double beta decay ,CUPID ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Engineering (miscellaneous) ,scintillation counter ,Scintillation ,molybdenum: nuclide ,010308 nuclear & particles physics ,bibliography ,crystal: geometry ,Computational physics ,efficiency ,FIS/04 - FISICA NUCLEARE E SUBNUCLEARE ,Energy (signal processing) - Abstract
The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$$_{2}$$ 2 $$^{100}$$ 100 MoO$$_4$$ 4 crystals as suitable detectors for neutrinoless double beta decay search. In this work, we characterised cubic crystals that, compared to the cylindrical crystals used by CUPID-Mo, are more appealing for the construction of tightly packed arrays. We measured an average energy resolution of ($$6.7\pm 0.6$$ 6.7 ± 0.6 ) keV FWHM in the region of interest, approaching the CUPID target of 5 keV FWHM. We assessed the identification of $$\alpha $$ α particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $$\alpha $$ α -induced background contribution. We also used the collected data to validate a Monte Carlo simulation modelling the light collection efficiency, which will enable further optimisations of the detector.
- Published
- 2021
- Full Text
- View/download PDF
207. Novel technique for the study of pileup events in cryogenic bolometers
- Author
-
Valentyn Novosad, Andrea Giachero, R. Nipoti, Jie Zhang, H. Z. Huang, V. G. Yefremenko, G. Keppel, D. Mayer, C. Nones, A. Puiu, S. Nisi, A. Armatol, K. Wilson, I. Colantoni, A. Barresi, P. Loaiza, C. Oriol, G. Pessina, V. Sanglard, L. Imbert, M. Faverzani, M. Beretta, S. Copello, C. Pagliarone, F.A. Danevich, A. Branca, Jonathan Ouellet, T. O'Donnell, Paolo Carniti, Massimiliano Clemenza, G. Bari, S. Di Domizio, Kai Vetter, C. Rosenfeld, D. L. Helis, Monica Sisti, Federico Ferri, H. Khalife, V. Boldrini, P. Gorla, P. Pari, F. Ferroni, Tomas Polakovic, B. Schmidt, Stefano Dell'Oro, A. Charrier, J. Billard, C. Tomei, S. H. Fu, N. Casali, Laura Cardani, G. Wang, Jie Yang, B. K. Fujikawa, R. J. Creswick, Davide Chiesa, P. Gras, M. Chapellier, C. Pira, Joseph A. Formaggio, L. Pagnanini, P. T. Surukuchi, C. Brofferio, L. Wang, Massimiliano Nastasi, Stefano Pozzi, E. Figueroa-Feliciano, Haiping Peng, V. Shlegel, V. Sharma, E. V. Hansen, A. S. Barabash, B. Paul, M. Gros, Evelyn Ferri, Oliviero Cremonesi, S. Zucchelli, James Nikkel, Ezio Previtali, J. Gascon, R. Mariam, C. C. Chang, L. Ma, Yu. G. Kolomensky, Luigi Cappelli, L. Taffarello, B. Welliver, A. Giuliani, M. Madhukuttan, Matias Velázquez, C. Augier, S. Marnieros, V. Yumatov, Goran Karapetrov, G. Fantini, A. Cazes, Danielle Speller, James R. Wilson, A. Cruciani, X. F. Navick, S. Pirro, V. V. Kobychev, J. Camilleri, A. Franceschi, Changbo Fu, C. Rusconi, J. A. Scarpaci, A. Juillard, L. Bergé, R. Rizzoli, M. M. Zarytskyy, V. Dompè, G. D'Imperio, Irene Nutini, A. D'Addabbo, P. de Marcillac, M. De Jesus, O. G. Polischuk, F. Bellini, A. Ressa, D. Baudin, M. Xue, M. Pavan, Lindley Winslow, A. Drobizhev, I. Dafinei, S. L. Wagaarachchi, F. Collamati, V. Pettinacci, Simone Capelli, E. Olivieri, S. I. Konovalov, Eric B. Norman, L. Pattavina, M. I. Martínez, T. Napolitano, L. Marini, V.I. Tretyak, D. Misiak, D. V. Poda, J. Johnston, M. Biassoni, E. Armengaud, Vasundhara Singh, S. Milana, O. Azzolini, L. Gironi, F. T. Avignone, Whitney Armstrong, Y. Liu, C. Bucci, T. D. Gutierrez, R. G. Huang, F. Mancarella, L. Yan, S. Pagan, B. Mauri, M. de Combarieu, E. Celi, C. Gotti, A. S. Zolotarova, Ke Han, Reina H. Maruyama, A. Tsymbaliuk, Y. Mei, K. M. Heeger, O. Tellier, L. Dumoulin, Giovanni Benato, Armatol A., Armengaud E., Armstrong W., Augier C., Avignone F.T., Azzolini O., Barabash A., Bari G., Barresi A., Baudin D., Bellini F., Benato G., Beretta M., Berge L., Biassoni M., Billard J., Boldrini V., Branca A., Brofferio C., Bucci C., Camilleri J., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cazes A., Celi E., Chang C., Chapellier M., Charrier A., Chiesa D., Clemenza M., Colantoni I., Collamati F., Copello S., Cremonesi O., Creswick R.J., Cruciani A., D'Addabbo A., D'Imperio G., Dafinei I., Danevich F.A., De Combarieu M., De Jesus M., De Marcillac P., Dell'Oro S., Di Domizio S., Dompe V., Drobizhev A., Dumoulin L., Fantini G., Faverzani M., Ferri E., Ferri F., Ferroni F., Figueroa-Feliciano E., Formaggio J., Franceschi A., Fu C., Fu S., Fujikawa B.K., Gascon J., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gras P., Gros M., Gutierrez T.D., Han K., Hansen E.V., Heeger K.M., Helis D.L., Huang H.Z., Huang R.G., Imbert L., Johnston J., Juillard A., Karapetrov G., Keppel G., Khalife H., Kobychev V.V., Kolomensky Y.G., Konovalov S., Liu Y., Loaiza P., Ma L., Madhukuttan M., Mancarella F., Mariam R., Marini L., Marnieros S., Martinez M., Maruyama R.H., Mauri B., Mayer D., Mei Y., Milana S., Misiak D., Napolitano T., Nastasi M., Navick X.F., Nikkel J., Nipoti R., Nisi S., Nones C., Norman E.B., Novosad V., Nutini I., O'Donnell T., Olivieri E., Oriol C., Ouellet J.L., Pagan S., Pagliarone C., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pettinacci V., Pira C., Pirro S., Poda D.V., Polakovic T., Polischuk O.G., Pozzi S., Previtali E., Puiu A., Ressa A., Rizzoli R., Rosenfeld C., Rusconi C., Sanglard V., Scarpaci J., Schmidt B., Sharma V., Shlegel V., Singh V., Sisti M., Speller D., Surukuchi P.T., Taffarello L., Tellier O., Tomei C., Tretyak V.I., Tsymbaliuk A., Velazquez M., Vetter K.J., Wagaarachchi S.L., Wang G., Wang L., Welliver B., Wilson J., Wilson K., Winslow L.A., Xue M., Yan L., Yang J., Yefremenko V., Yumatov V., Zarytskyy M.M., Zhang J., Zolotarova A., Zucchelli S., Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), CUPID, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone, F, Azzolini, O, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cremonesi, O, Creswick, R, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, Danevich, F, De Combarieu, M, De Jesus, M, De Marcillac, P, Dell'Oro, S, Di Domizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fantini, G, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Figueroa-Feliciano, E, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, B, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, V, Kolomensky, Y, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, R, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, X, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, E, Novosad, V, Nutini, I, O'Donnell, T, Olivieri, E, Oriol, C, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Poda, D, Polakovic, T, Polischuk, O, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Rizzoli, R, Rosenfeld, C, Rusconi, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Tellier, O, Tomei, C, Tretyak, V, Tsymbaliuk, A, Velazquez, M, Vetter, K, Wagaarachchi, S, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, M, Zhang, J, Zolotarova, A, and Zucchelli, S
- Subjects
data analysis method ,double beta decay, nuclear tests of fundamental interactions, Particle decays ,Physics - Instrumentation and Detectors ,double beta decay ,FOS: Physical sciences ,Cryogenics ,MESH: numerical calculation ,01 natural sciences ,law.invention ,benchmark ,bolometer ,double-beta decay: (0neutrino) ,law ,Double beta decay ,0103 physical sciences ,Electronic engineering ,MESH: benchmark ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,numerical calculations ,010306 general physics ,time resolution ,nuclear tests of fundamental interactions ,Physics ,Signal generator ,010308 nuclear & particles physics ,Bolometer ,Detector ,Time resolution ,MESH: data analysis method ,Instrumentation and Detectors (physics.ins-det) ,MESH: bolometer ,Gran Sasso ,Neutrinoless Double Beta decay, Neutrino Physics ,MESH: cryogenics ,efficiency ,cryogenics ,pile-up ,Rise time ,MESH: Gran Sasso ,Benchmark (computing) ,MESH: double-beta decay: (0neutrino) ,Neutrinoless double-beta decay ,MESH: efficiency ,Particle decays ,MESH: time resolution ,MESH: pile-up - Abstract
International audience; Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pile-up events with a programmable waveform generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pile-up events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pile-up pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pile-up events with rise time of ~15 ms down to time separation between the individual events of 2 ms.
- Published
- 2021
- Full Text
- View/download PDF
208. A CUPID Li$_2$ $^{100} $MoO$_4$ scintillating bolometer tested in the CROSS underground facility
- Author
-
A. S. Barabash, V. Yumatov, G. D'Imperio, M. De Deo, Ezio Previtali, J. M. Calvo-Mozota, Evelyn Ferri, B. Welliver, L. Gironi, L. Marini, E. Guerard, D. Misiak, D. V. Poda, J. Johnston, V. Dompè, F. T. Avignone, Whitney Armstrong, A. Charrier, O. Tellier, I. Colantoni, A. D'Addabbo, S. Di Domizio, P. Pari, Tomas Polakovic, Massimiliano Clemenza, V. Shlegel, R. Mariam, Yu. G. Kolomensky, Luigi Cappelli, Monica Sisti, M. Pavan, S. Zucchelli, Laura Cardani, P. de Marcillac, C. Augier, Goran Karapetrov, X.-F. Navick, B. K. Fujikawa, Stefano Pozzi, L. Pagnanini, P. T. Surukuchi, O. Azzolini, G. Fantini, Federico Ferri, B. Schmidt, C. Oriol, C. Pagliarone, E. Celi, T. O'Donnell, S. H. Fu, S. Dell'Oro, Giovanni Benato, M. Xue, Yuting Liu, Ch. Bourgeois, C. C. Chang, Stefano Nisi, James R. Wilson, S. Milana, G. Olivier, A. Cruciani, A. Franceschi, Changbo Fu, I. Dafinei, M. Chapellier, C. Gotti, S. Copello, C. Brofferio, S. Pirro, Jie Yang, V. Sharma, D. L. Helis, A. Barresi, J. Camilleri, R. Rizzoli, L. Ma, L. Dumoulin, Davide Chiesa, A. S. Zolotarova, Paolo Carniti, V. Pettinacci, A. Juillard, A. Candela, M. Gros, M. Madhukuttan, I. C. Bandac, M. De Jesus, E. V. Hansen, O. G. Polischuk, A. Drobizhev, Ke Han, F. Bellini, A. Ressa, Reina H. Maruyama, V.I. Tretyak, F.A. Danevich, J. A. Scarpaci, C. Bucci, T. D. Gutierrez, M. Faverzani, Matias Velázquez, P. Loaiza, Kai Vetter, Massimiliano Nastasi, S. I. Konovalov, L. Taffarello, D. Reynet, V. V. Kobychev, L. Bergé, J. Gascon, V. Sanglard, L. Yan, L. Imbert, Virendra Singh, M. M. Zarytskyy, Valentyn Novosad, C. Rosenfeld, Danielle Speller, Andrea Giachero, N. Casali, A. Branca, L. Pattavina, A. Ianni, E. Olivieri, R. J. Creswick, Eric B. Norman, V. Boldrini, P. Gras, K. Wilson, S. Pagan, J. Billard, S. Marnieros, Li Wang, T. Napolitano, R. Nipoti, A. Cazes, P. Gorla, F. Ferroni, E. Figueroa-Feliciano, C. Tomei, C. Pira, Haiping Peng, Oliviero Cremonesi, M. Biassoni, D. Mayer, Jonathan Ouellet, G. Bari, Lindley Winslow, M. de Combarieu, Joseph A. Formaggio, A. Tsymbaliuk, Y. Mei, A. Armatol, K. M. Heeger, R. G. Huang, F. Mancarella, B. Paul, M. I. Martínez, G. Pessina, Jie Zhang, C. Nones, A. Puiu, A. Giuliani, B. Mauri, James Nikkel, Irene Nutini, G. Wang, H. Z. Huang, V. G. Yefremenko, G. Keppel, H. Khalife, E. Armengaud, D. Baudin, M. Beretta, S. L. Wagaarachchi, F. Collamati, Simone Capelli, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), CUPID, CROSS, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Armatol A., Armengaud E., Armstrong W., Augier C., Iii F.T.A., Azzolini O., Bandac I.C., Barabash A.S., Bari G., Barresi A., Baudin D., Bellini F., Benato G., Beretta M., Berge L., Bourgeois C., Biassoni M., Billard J., Boldrini V., Branca A., Brofferio C., Bucci C., Calvo-Mozota J.M., Camilleri J., Candela A., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cazes A., Celi E., Chang C., Chapellier M., Charrier A., Chiesa D., Clemenza M., Colantoni I., Collamati F., Copello S., Cremonesi O., Creswick R.J., Cruciani A., D'Addabbo A., D'Imperio G., Dafinei I., Danevich F.A., De Combarieu M., Deo M.D., Jesus M.D., De Marcillac P., Dell'Oro S., Domizio S.D., Dompe V., Drobizhev A., Dumoulin L., Fantini G., Faverzani M., Ferri E., Ferri F., Ferroni F., Figueroa-Feliciano E., Formaggio J., Franceschi A., Fu C., Fu S., Fujikawa B.K., Gascon J., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gras P., Gros M., Guerard E., Gutierrez T.D., Han K., Hansen E.V., Heeger K.M., Helis D.L., Huang H.Z., Huang R.G., Ianni A., Imbert L., Johnston J., Juillard A., Karapetrov G., Keppel G., Khalife H., Kobychev V.V., Kolomensky Y.G., Konovalov S.I., Liu Y., Loaiza P., Ma L., Madhukuttan M., Mancarella F., Mariam R., Marini L., Marnieros S., Martinez M., Maruyama R.H., Mauri B., Mayer D., Mei Y., Milana S., Misiak D., Napolitano T., Nastasi M., Navick X.-F., Nikkel J., Nipoti R., Nisi S., Nones C., Norman E.B., Novosad V., Nutini I., O'Donnell T., Olivier G., Olivieri E., Oriol C., Ouellet J.L., Pagan S., Pagliarone C., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pettinacci V., Pira C., Pirro S., Poda D.V., Polakovic T., Polischuk O.G., Pozzi S., Previtali E., Puiu A., Ressa A., Reynet D., Rizzoli R., Rosenfeld C., Sanglard V., Scarpaci J.A., Schmidt B., Sharma V., Shlegel V.N., Singh V., Sisti M., Speller D., Surukuchi P.T., Taffarello L., Tellier O., Tomei C., Tretyak V.I., Tsymbaliuk A., Velazquez M., Vetter K.J., Wagaarachchi S.L., Wang G., Wang L., Welliver B., Wilson J., Wilson K., Winslow L.A., Xue M., Yan L., Yang J., Yefremenko V., Yumatov V.I., Zarytskyy M.M., Zhang J., Zolotarova A.S., Zucchelli S., Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone F. T., I, Azzolini, O, Bandac, I, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Bourgeois, C, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Calvo-Mozota, J, Camilleri, J, Candela, A, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cremonesi, O, Creswick, R, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, Danevich, F, De Combarieu, M, Deo, M, Jesus, M, De Marcillac, P, Dell'Oro, S, Domizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fantini, G, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Figueroa-Feliciano, E, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, B, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Guerard, E, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Ianni, A, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, V, Kolomensky, Y, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, R, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, X, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, E, Novosad, V, Nutini, I, O'Donnell, T, Olivier, G, Olivieri, E, Oriol, C, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Poda, D, Polakovic, T, Polischuk, O, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Reynet, D, Rizzoli, R, Rosenfeld, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Tellier, O, Tomei, C, Tretyak, V, Tsymbaliuk, A, Velazquez, M, Vetter, K, Wagaarachchi, S, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, M, Zhang, J, Zolotarova, A, and Zucchelli, S
- Subjects
gas and liquid scintillators) ,Physics - Instrumentation and Detectors ,Accurate estimation ,Physics::Instrumentation and Detectors ,Bolometer ,Analytical chemistry ,Double-beta decay ,FOS: Physical sciences ,Cryogenic detector ,Radiopurity ,01 natural sciences ,030218 nuclear medicine & medical imaging ,law.invention ,Particle identification ,Particle identification methods ,03 medical and health sciences ,Particle identification method ,0302 clinical medicine ,CUORE ,law ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detector array ,Instrumentation ,Mathematical Physics ,Event triggered ,Physics ,Lithium molybdate ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Double-beta decay detectors ,scintillation and light emission processes (solid ,Double-beta decay detector ,Cryogenic detectors ,Scintillators ,Crystal scintillator ,Energy (signal processing) - Abstract
A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0\nu2\beta$ experiment CUPID. The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li$_{2}$$^{100}$MoO$_4$ bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV $\gamma$ line. The detection of scintillation light for each event triggered by the Li$_{2}$$^{100}$MoO$_4$ bolometer allowed for a full separation ($\sim$8$\sigma$) between $\gamma$($\beta$) and $\alpha$ events above 2 MeV. The Li$_{2}$$^{100}$MoO$_4$ crystal also shows a high internal radiopurity with $^{228}$Th and $^{226}$Ra activities of less than 3 and 8 $\mu$Bq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers for high-sensitivity searches for the $^{100}$Mo $0\nu2\beta$ decay in CROSS and CUPID projects., Comment: 19 pages, 7 figures, 1 table
- Published
- 2021
- Full Text
- View/download PDF
209. Lowering the Energy Threshold of the CUORE Experiment: Benefits in the Surface Alpha Events Reconstruction: Comparison Between Optimum Trigger and Derivative Trigger Performance in the Search for 0 νββ
- Author
-
L. Pattavina, Marco Pallavicini, L. Canonica, L. Marini, S. Di Domizio, C. Bucci, T. D. Gutierrez, G. Pessina, K. Wilson, Stefano Dell'Oro, Jonathan Ouellet, J. Johnston, G. Bari, Laura Cardani, L. Zanotti, J. Nikkel, L. Gironi, F. T. Avignone, H. Z. Huang, B. K. Fujikawa, G. Keppel, Stefano Pozzi, Y. G. Ma, Massimiliano Clemenza, Carlo Cosmelli, Davide Chiesa, C. Nones, A. Puiu, V. Pettinacci, S. Zucchelli, N. D. Scielzo, L. Pagnanini, C. Brofferio, T. O'Donnell, D. Q. Fang, Claudio Gotti, Ke Han, Reina H. Maruyama, M. Vignati, C. Rusconi, Stuart J. Freedman, D. D'Aguanno, Ettore Fiorini, V. Novati, James R. Wilson, Andrea Giachero, C. Rosenfeld, P. Gorla, F. Ferroni, C. Tomei, M. A. Franceschi, C. Pagliarone, D. Q. Adams, R. G. Huang, N. Casali, F. Terranova, Vasundhara Singh, K. Alfonso, C. J. Davis, Monica Sisti, B. Schmidt, Eric B. Norman, B. S. Wang, L. Ma, O. Azzolini, Y. Mei, Lindley Winslow, V. Sharma, T. Napolitano, S. Copello, I. Dafinei, M. Sakai, Paolo Carniti, Silvia Capelli, Xi-Guang Cao, Massimiliano Nastasi, K. M. Heeger, F. Bellini, S. Pirro, L. Cappelli, Oliviero Cremonesi, M. Biassoni, R. J. Creswick, G. Fantini, M. Pavan, V. Dompè, Giovanni Benato, A. D'Addabbo, C. Pira, A. Caminata, Ezio Previtali, S. Morganti, B. Welliver, Carlo Ligi, Evelyn Ferri, N. Moggi, Samuele Sangiorgio, A. Campani, A. Nucciotti, C. Alduino, M. Faverzani, Yu. G. Kolomensky, A. Branca, L. Taffarello, A. Giuliani, Danielle Speller, S. L. Wagaarachchi, N. Chott, Irene Nutini, S. Zimmermann, Campani, A, Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Caminata, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Davis, C, Dell'Oro, S, Di Domizio, S, Dompe, V, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Ligi, C, Ma, Y, Ma, L, Marini, L, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nikkel, J, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Ouellet, J, Pagliarone, C, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Sharma, V, Singh, V, Sisti, M, Speller, D, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Zanotti, L, Zimmermann, S, Zucchelli, S, Campani A., Adams D.Q., Alduino C., Alfonso K., Avignone F.T., Azzolini O., Bari G., Bellini F., Benato G., Biassoni M., Branca A., Brofferio C., Bucci C., Caminata A., Canonica L., Cao X.G., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Chiesa D., Chott N., Clemenza M., Copello S., Cosmelli C., Cremonesi O., Creswick R.J., D'Addabbo A., D'Aguanno D., Dafinei I., Davis C.J., Dell'Oro S., Di Domizio S., Dompe V., Fang D.Q., Fantini G., Faverzani M., Ferri E., Ferroni F., Fiorini E., Franceschi M.A., Freedman S.J., Fujikawa B.K., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gutierrez T.D., Han K., Heeger K.M., Huang R.G., Huang H.Z., Johnston J., Keppel G., Kolomensky Y.G., Ligi C., Ma Y.G., Ma L., Marini L., Maruyama R.H., Mei Y., Moggi N., Morganti S., Napolitano T., Nastasi M., Nikkel J., Nones C., Norman E.B., Novati V., Nucciotti A., Nutini I., O'Donnell T., Ouellet J.L., Pagliarone C.E., Pagnanini L., Pallavicini M., Pattavina L., Pavan M., Pessina G., Pettinacci V., Pira C., Pirro S., Pozzi S., Previtali E., Puiu A., Rosenfeld C., Rusconi C., Sakai M., Sangiorgio S., Schmidt B., Scielzo N.D., Sharma V., Singh V., Sisti M., Speller D., Taffarello L., Terranova F., Tomei C., Vignati M., Wagaarachchi S.L., Wang B.S., Welliver B., Wilson J., Wilson K., Winslow L.A., Zanotti L., Zimmermann S., and Zucchelli S.
- Subjects
Particle physics ,Bolometers for dark matter research ,Physics::Instrumentation and Detectors ,trigger algorithm ,01 natural sciences ,Coincidence ,law.invention ,CUORE ,WIMP ,law ,Double beta decay ,0103 physical sciences ,General Materials Science ,Neutrinoless double beta decay ,010306 general physics ,Axion ,Physics ,010308 nuclear & particles physics ,Scattering ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Trigger algorithms ,Condensed Matter Physics ,Digital signal processing ,Atomic and Molecular Physics, and Optics ,Energy (signal processing) - Abstract
CUORE is a tonne-scale cryogenic experiment located at the Laboratori Nazionali del Gran Sasso that exploits bolometric technique to search for neutrinoless double beta decay of 130Te. Thanks to its very low background and large mass, CUORE is also a powerful tool to study a broad class of phenomena, such as solar axions and WIMP scattering. The ability to conduct such sensitive searches crucially depends on the energy threshold, which has to be kept as low as possible. In this contribution, we show how the trigger algorithm affects the sensitivity to low-energy phenomena and the interpretation of the energy spectrum. In particular, we focus on the impact that the trigger algorithm has on the identification of the coincidence events among different crystals and, consequently, on the reconstruction of the background.
- Published
- 2020
210. The CUORE Detector and Results
- Author
-
James R. Wilson, C. Rosenfeld, S. Morganti, N. D. Scielzo, Carlo Ligi, V. Dompè, A. D'Addabbo, A. Campani, P. Gorla, F. Ferroni, C. Tomei, Monica Sisti, S. Copello, S. L. Wagaarachchi, J. Nikkel, L. Zanotti, Paolo Carniti, C. Pira, M. Faverzani, N. Casali, N. Chott, Simone Capelli, C. J. Davis, Giovanni Benato, H. Z. Huang, G. Keppel, L. Gironi, Ettore Fiorini, F. Terranova, G. Fantini, C. Nones, A. Puiu, S. Zucchelli, V. Novati, Andrea Giachero, Massimiliano Clemenza, Carlo Cosmelli, F. T. Avignone, Irene Nutini, Yu. G. Kolomensky, Massimiliano Nastasi, L. Canonica, L. Marini, V. Pettinacci, K. Wilson, Eric B. Norman, T. O'Donnell, D. Q. Adams, Vasundhara Singh, Jonathan Ouellet, K. Alfonso, S. Di Domizio, J. Johnston, Claudio Gotti, G. Bari, Y. Mei, D. D'Aguanno, T. Napolitano, Evelyn Ferri, Laura Cardani, L. Taffarello, Stefano Dell'Oro, B. K. Fujikawa, Stefano Pozzi, F. Bellini, B. Schmidt, Y. G. Ma, Oliviero Cremonesi, M. Biassoni, Danielle Speller, B. S. Wang, Xi-Guang Cao, C. Brofferio, M. Vignati, M. Pavan, L. Pagnanini, K. M. Heeger, Davide Chiesa, O. Azzolini, N. Moggi, Marco Pallavicini, C. Rusconi, C. Bucci, T. D. Gutierrez, R. J. Creswick, Samuele Sangiorgio, Lindley Winslow, A. Giuliani, Ke Han, Reina H. Maruyama, I. Dafinei, M. Sakai, G. Pessina, Stuart J. Freedman, L. Pattavina, A. Nucciotti, C. Alduino, S. Zimmermann, S. Pirro, L. Ma, D. Q. Fang, A. Branca, M. A. Franceschi, R. G. Huang, L. Cappelli, C. Pagliarone, A. Caminata, Ezio Previtali, B. Welliver, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Nutini, I, Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Caminata, A, Campani, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, D’Addabbo, A, D’Aguanno, D, Dafinei, I, Davis, C, Dell’Oro, S, Domizio, S, Dompè, V, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Ligi, C, Ma, Y, Ma, L, Marini, L, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nikkel, J, Nones, C, Norman, E, Novati, V, Nucciotti, A, O’Donnell, T, Ouellet, J, Pagliarone, C, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Singh, V, Sisti, M, Speller, D, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Zanotti, L, Zimmermann, S, Zucchelli, S, Nutini I., Adams D.Q., Alduino C., Alfonso K., Avignone F.T., Azzolini O., Bari G., Bellini F., Benato G., Biassoni M., Branca A., Brofferio C., Bucci C., Caminata A., Campani A., Canonica L., Cao X.G., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Chiesa D., Chott N., Clemenza M., Copello S., Cosmelli C., Cremonesi O., Creswick R.J., D'Addabbo A., D'Aguanno D., Dafinei I., Davis C.J., Dell'Oro S., Domizio S.D., Dompe V., Fang D.Q., Fantini G., Faverzani M., Ferri E., Ferroni F., Fiorini E., Franceschi M.A., Freedman S.J., Fujikawa B.K., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gutierrez T.D., Han K., Heeger K.M., Huang R.G., Huang H.Z., Johnston J., Keppel G., Kolomensky Y.G., Ligi C., Ma Y.G., Ma L., Marini L., Maruyama R.H., Mei Y., Moggi N., Morganti S., Napolitano T., Nastasi M., Nikkel J., Nones C., Norman E.B., Novati V., Nucciotti A., O'Donnell T., Ouellet J.L., Pagliarone C.E., Pagnanini L., Pallavicini M., Pattavina L., Pavan M., Pessina G., Pettinacci V., Pira C., Pirro S., Pozzi S., Previtali E., Puiu A., Rosenfeld C., Rusconi C., Sakai M., Sangiorgio S., Schmidt B., Scielzo N.D., Singh V., Sisti M., Speller D., Taffarello L., Terranova F., Tomei C., Vignati M., Wagaarachchi S.L., Wang B.S., Welliver B., Wilson J., Wilson K., Winslow L.A., Zanotti L., Zimmermann S., Zucchelli S., and Département de Physique des Particules (ex SPP) (DPhP)
- Subjects
Particle physics ,0 νββ ,Cryogenics ,CUORE ,Macro-calorimeters ,Neutrinos ,Physics::Instrumentation and Detectors ,Cryogenic ,01 natural sciences ,tellurium: oxygen ,010305 fluids & plasmas ,crystal ,double-beta decay: (0neutrino) ,Double beta decay ,0103 physical sciences ,Neutrino ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,General Materials Science ,Beta (velocity) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,activity report ,detector: design ,Physics ,0νββ ,0 nu beta beta ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,High Energy Physics::Experiment ,tellurium: nuclide ,Macro-calorimeter ,experimental results - Abstract
The cryogenic underground observatory for rare events (CUORE) is a cryogenic experiment searching for neutrinoless double beta decay ($$0\nu \beta \beta$$0νββ) of $${^{130}\hbox {Te}}$$130Te. The detector consists of an array of $$988\,{\hbox {TeO}_{2}}$$988TeO2 crystals arranged in a compact cylindrical structure of 19 towers. We report the CUORE initial operations and optimization campaigns. We then present the CUORE results on $$0\nu \beta \beta$$0νββ and $$2\nu \beta \beta$$2νββ decay of $${^{130}\hbox {Te}}$$130Te obtained from the analysis of the physics data acquired in 2017.
- Published
- 2019
- Full Text
- View/download PDF
211. Machine Learning Techniques for Pile-Up Rejection in Cryogenic Calorimeters
- Author
-
G. Fantini, A. Armatol, E. Armengaud, W. Armstrong, C. Augier, F. T. Avignone, O. Azzolini, A. Barabash, G. Bari, A. Barresi, D. Baudin, F. Bellini, G. Benato, M. Beretta, L. Bergé, M. Biassoni, J. Billard, V. Boldrini, A. Branca, C. Brofferio, C. Bucci, J. Camilleri, S. Capelli, L. Cappelli, L. Cardani, P. Carniti, N. Casali, A. Cazes, E. Celi, C. Chang, M. Chapellier, A. Charrier, D. Chiesa, M. Clemenza, I. Colantoni, F. Collamati, S. Copello, F. Cova, O. Cremonesi, R. J. Creswick, A. Cruciani, A. D’Addabbo, G. D’Imperio, I. Dafinei, F. A. Danevich, M. de Combarieu, M. De Jesus, P. de Marcillac, S. Dell’Oro, S. Di Domizio, V. Dompè, A. Drobizhev, L. Dumoulin, M. Fasoli, M. Faverzani, E. Ferri, F. Ferri, F. Ferroni, E. Figueroa-Feliciano, J. Formaggio, A. Franceschi, C. Fu, S. Fu, B. K. Fujikawa, J. Gascon, A. Giachero, L. Gironi, A. Giuliani, P. Gorla, C. Gotti, P. Gras, M. Gros, T. D. Gutierrez, K. Han, E. V. Hansen, K. M. Heeger, D. L. Helis, H. Z. Huang, R. G. Huang, L. Imbert, J. Johnston, A. Juillard, G. Karapetrov, G. Keppel, H. Khalife, V. V. Kobychev, Yu. G. Kolomensky, S. Konovalov, Y. Liu, P. Loaiza, L. Ma, M. Madhukuttan, F. Mancarella, R. Mariam, L. Marini, S. Marnieros, M. Martinez, R. H. Maruyama, B. Mauri, D. Mayer, Y. Mei, S. Milana, D. Misiak, T. Napolitano, M. Nastasi, X. F. Navick, J. Nikkel, R. Nipoti, S. Nisi, C. Nones, E. B. Norman, V. Novosad, I. Nutini, T. O’Donnell, E. Olivieri, C. Oriol, J. L. Ouellet, S. Pagan, C. Pagliarone, L. Pagnanini, P. Pari, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, V. Pettinacci, C. Pira, S. Pirro, D. V. Poda, T. Polakovic, O. G. Polischuk, S. Pozzi, E. Previtali, A. Puiu, A. Ressa, R. Rizzoli, C. Rosenfeld, C. Rusconi, V. Sanglard, J. Scarpaci, B. Schmidt, V. Sharma, V. Shlegel, V. Singh, M. Sisti, D. Speller, P. T. Surukuchi, L. Taffarello, O. Tellier, C. Tomei, V. I. Tretyak, A. Tsymbaliuk, A. Vedda, M. Velazquez, K. J. Vetter, S. L. Wagaarachchi, G. Wang, L. Wang, B. Welliver, J. Wilson, K. Wilson, L. A. Winslow, M. Xue, L. Yan, J. Yang, V. Yefremenko, V. Yumatov, M. M. Zarytskyy, J. Zhang, A. Zolotarova, S. Zucchelli, Fantini, G, Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone, FT, Azzolini, O, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cova, F, Cremonesi, O, Creswick, RJ, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, Danevich, FA, de Combarieu, M, De Jesus, M, de Marcillac, P, Dell'Oro, S, Di Domizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fasoli, M, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, BK, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Gutierrez, TD, Han, K, Hansen, EV, Heeger, KM, Helis, DL, Huang, HZ, Huang, RG, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, VV, Kolomensky, YG, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, RH, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, XF, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, EB, Novosad, V, Nutini, I, O'Donnell, T, Olivieri, E, Oriol, C, Ouellet, JL, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Poda, DV, Polakovic, T, Polischuk, OG, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Rizzoli, R, Rosenfeld, C, Rusconi, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, PT, Taffarello, L, Tellier, O, Tomei, C, Tretyak, VI, Tsymbaliuk, A, Vedda, A, Velazquez, M, Vetter, KJ, Wagaarachchi, SL, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, LA, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, MM, Zhang, J, Zolotarova, A, Zucchelli, S, Laboratoire de Cryogénie (LC), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Avignone, F, Bergé, L, Creswick, R, D’Addabbo, A, D’Imperio, G, Danevich, F, Dell’Oro, S, Domizio, S, Dompè, V, Figueroa-Feliciano, E, Fujikawa, B, Gutierrez, T, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Kobychev, V, Kolomensky, Y, Maruyama, R, Navick, X, Norman, E, O’Donnell, T, Ouellet, J, Poda, D, Polischuk, O, Surukuchi, P, Tretyak, V, Vetter, K, Wagaarachchi, S, Winslow, L, and Zarytskyy, M
- Subjects
neural network ,Convolutional neural network ,hierarchy ,crystal ,Cryogenic calorimeters ,neutrino ,Machine learning ,CUPID ,calorimeter ,[INFO]Computer Science [cs] ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Neutrinoless double beta decay ,neutrinoless ,Pile-up ,CUORE ,background ,double-beta decay ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Gran Sasso ,injection ,cryogenics ,efficiency ,mass ,readout ,Convolutional neural networks ,upgrade ,Cryogenic calorimeter ,performance ,Majorana - Abstract
CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale array of Li2MoO4 (LMO) cryogenic calorimeters with double readout of heat and light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino masses in the search for neutrinoless double beta decay of 100Mo. Pile-up of standard double beta decay of the candidate isotope is a relevant background. We generate pile-up heat events via injection of Joule heater pulses with a programmable waveform generator in a small array of LMO crystals operated underground in the Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and control both time difference and underlying amplitudes of individual heat pulses in the data. We present the performance of supervised learning classifiers on data and the attained pile-up rejection efficiency.
- Published
- 2022
- Full Text
- View/download PDF
212. Expected sensitivity to $^{128}$Te neutrinoless double beta decay with the CUORE TeO$_2$ cryogenic bolometers
- Author
-
V. Dompè, D. Q. Adams, C. Alduino, K. Alfonso, F. T. Avignone, O. Azzolini, G. Bari, F. Bellini, G. Benato, M. Beretta, M. Biassoni, A. Branca, C. Brofferio, C. Bucci, J. Camilleri, A. Caminata, A. Campani, L. Canonica, X. G. Cao, S. Capelli, L. Cappelli, L. Cardani, P. Carniti, N. Casali, E. Celi, D. Chiesa, M. Clemenza, S. Copello, O. Cremonesi, R. J. Creswick, A. D’Addabbo, I. Dafinei, S. Dell’Oro, S. Di Domizio, S. Di Lorenzo, D. Q. Fang, G. Fantini, M. Faverzani, E. Ferri, F. Ferroni, E. Fiorini, M. A. Franceschi, S. J. Freedman, S. H. Fu, B. K. Fujikawa, S. Ghislandi, A. Giachero, L. Gironi, A. Giuliani, P. Gorla, C. Gotti, T. D. Gutierrez, K. Han, E. V. Hansen, K. M. Heeger, R. G. Huang, H. Z. Huang, J. Johnston, G. Keppel, Yu G. Kolomensky, R. Kowalski, C. Ligi, R. Liu, L. Ma, Y. G. Ma, L. Marini, R. H. Maruyama, D. Mayer, Y. Mei, N. Moggi, S. Morganti, T. Napolitano, M. Nastasi, J. Nikkel, C. Nones, E. B. Norman, A. Nucciotti, I. Nutini, T. O’Donnell, M. Olmi, J. L. Ouellet, S. Pagan, C. E. Pagliarone, L. Pagnanini, M. Pallavicini, L. Pattavina, M. Pavan, G. Pessina, V. Pettinacci, C. Pira, S. Pirro, S. Pozzi, E. Previtali, A. Puiu, S. Quitadamo, A. Ressa, C. Rosenfeld, C. Rusconi, M. Sakai, S. Sangiorgio, B. Schmidt, N. D. Scielzo, V. Sharma, V. Singh, M. Sisti, D. Speller, P. T. Surukuchi, L. Taffarello, F. Terranova, C. Tomei, K. J. Vetter, M. Vignati, S. L. Wagaarachchi, B. S. Wang, B. Welliver, J. Wilson, K. Wilson, L. A. Winslow, S. Zimmermann, S. Zucchelli, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Dompe, V, Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Beretta, M, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Caminata, A, Campani, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Celi, E, Chiesa, D, Clemenza, M, Copello, S, Cremonesi, O, Creswick, R, D'Addabbo, A, Dafinei, I, Dell'Oro, S, Di Domizio, S, Di Lorenzo, S, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fu, S, Fujikawa, B, Ghislandi, S, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Kowalski, R, Ligi, C, Liu, R, Ma, L, Ma, Y, Marini, L, Maruyama, R, Mayer, D, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nikkel, J, Nones, C, Norman, E, Nucciotti, A, Nutini, I, O'Donnell, T, Olmi, M, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Quitadamo, S, Ressa, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Sharma, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Terranova, F, Tomei, C, Vetter, K, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Zimmermann, S, Zucchelli, S, Adams, DQ, Avignone, FT, Cao, XG, Creswick, RJ, Fang, DQ, Franceschi, MA, Freedman, SJ, Fu, SH, Fujikawa, BK, Gutierrez, TD, Hansen, EV, Heeger, KM, Huang, RG, Huang, HZ, Kolomensky, YG, Ma, YG, Maruyama, RH, Norman, EB, Ouellet, JL, Pagliarone, CE, Scielzo, ND, Surukuchi, PT, Vetter, KJ, Wagaarachchi, SL, Wang, BS, and Winslow, LA
- Subjects
CUORE ,Physics::Instrumentation and Detectors ,Astrophysics::Instrumentation and Methods for Astrophysics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Condensed Matter Physics ,Cryogenic bolometer ,Atomic and Molecular Physics, and Optics ,CUORE, Cryogenic Bolometers ,Cryogenic bolometers ,General Materials Science ,High Energy Physics::Experiment ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Neutrinoless double beta decay ,Tellurium ,Nuclear Experiment ,128-Te - Abstract
The CUORE experiment is a ton-scale array of $$\hbox {TeO}_2$$ TeO 2 cryogenic bolometers located at the underground Laboratori Nazionali del Gran Sasso of Istituto Nazionale di Fisica Nucleare (INFN), in Italy. The CUORE detector consists of 988 crystals operated as source and detector at a base temperature of $$\sim 10$$ ∼ 10 mK. Such cryogenic temperature is reached and maintained by means of a custom built cryogen-free dilution cryostat, designed with the aim of minimizing the vibrational noise and the environmental radioactivity. The primary goal of CUORE is the search for neutrinoless double beta decay of $$^{130}\hbox {Te}$$ 130 Te , but thanks to its large target mass and ultra-low background it is suitable for the study of other rare processes as well, such as the neutrinoless double beta decay of $$^{128}\hbox {Te}$$ 128 Te . This tellurium isotope is an attractive candidate for the search of this process, due to its high natural isotopic abundance of 31.75%. The transition energy at (866.7 ± 0.7) keV lies in a highly populated region of the energy spectrum, dominated by the contribution of the two-neutrino double beta decay of $$^{130}\hbox {Te}$$ 130 Te . As the first ton-scale infrastructure operating cryogenic $$\hbox {TeO}_2$$ TeO 2 bolometers in stable conditions, CUORE is able to achieve a factor $$>10$$ > 10 higher sensitivity to the neutrinoless double beta decay of this isotope with respect to past direct experiments.
- Published
- 2021
- Full Text
- View/download PDF
213. Results from the CUORE experiment
- Author
-
D. Q. Adams, C. Alduino, K. Alfonso, F. T. Avignone III, O. Azzolini, G. Bari, F. Bellini, G. Benato, M. Biassoni, A. Branca, C. Brofferio, C. Bucci, J. Camilleri, A. Caminata, A. Campani, L. Canonica, X. G. Cao, S. Capelli, L. Cappelli, L. Cardani, P. Carniti, N. Casali, D. Chiesa, M. Clemenza, S. Copello, C. Cosmelli, O. Cremonesi, R. J. Creswick, A. D'Addabbo, D. D'Aguanno, I. Dafinei, C. J. Davis, F. Del Corso, S. Dell'Oro, S. Di Domizio, V. Dompè, D. Q. Fang, G. Fantini, M. Faverzani, E. Ferri, F. Ferroni, E. Fiorini, M. A. Franceschi, S. J. Freedman, B. K. Fujikawa, A. Giachero, L. Gironi, A. Giuliani, P. Gorla, C. Gotti, T. D. Gutierrez, K. Han, K. M. Heeger, R. G. Huang, H. Z. Huang, J. Johnston, G. Keppel, Yu. G. Kolomensky, C. Ligi, L. Ma, Y. G. Ma, L. Marini, R. H. Maruyama, Y. Mei, N. Moggi, S. Morganti, T. Napolitano, M. Nastasi, J. Nikkel, C. Nones, E. B. Norman, V. Novati, A. Nucciotti, I. Nutini, T. O'Donnell, J. L. Ouellet, C. E. Pagliarone, L. Pagnanini, M. Pallavicini, L. Pattavina, M. Pavan, G. Pessina, V. Pettinacci, C. Pira, S. Pirro, S. Pozzi, E. Previtali, A. Puiu, C. Rosenfeld, C. Rusconi, M. Sakai, S. Sangiorgio, B. Schmidt, N. D. Scielzo, V. Singh, M. Sisti, D. Speller, L. Taffarello, F. Terranova, C. Tomei, M. Vignati, S. L. Wagaarachchi, B. S. Wang, B. Welliver, J. Wilson, K. Wilson, L. A. Winslow, L. Zanotti, S. Zimmermann, S. Zucchelli, Adams, D, Alduino, C, Alfonso, K, Avignone III, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Caminata, A, Campani, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Davis, C, Del Corso, F, Dell'Oro, S, Di Domizio, S, Dompè, V, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Ligi, C, Ma, L, Ma, Y, Marini, L, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nikkel, J, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Ouellet, J, Pagliarone, C, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Singh, V, Sisti, M, Speller, D, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Zanotti, L, Zimmermann, S, and Zucchelli, S
- Subjects
neutrinoless double beta decay - Published
- 2020
214. Status and results from the CUORE experiment
- Author
-
C. Bucci, T. D. Gutierrez, Silvia Capelli, Massimiliano Nastasi, C. Pira, L. Gironi, F. T. Avignone, X. G. Cao, S. Di Domizio, V. Dompè, L. Taffarello, Danielle Speller, L. Cappelli, Laura Cardani, H. Z. Huang, M. Pavan, M. A. Franceschi, B. K. Fujikawa, Stefano Pozzi, Carlo Ligi, C. Pagliarone, Y. Mei, Massimiliano Clemenza, Carlo Cosmelli, Stefano Dell'Oro, A. D’Addabbo, M. Vignati, Lindley Winslow, A. Campani, S. Zucchelli, G. Keppel, K. Wilson, Davide Chiesa, Claudio Gotti, R. G. Huang, M. Faverzani, Jonathan Ouellet, G. Bari, A. Branca, C. Brofferio, L. Ma, Deqing Fang, S. Pirro, C. Rusconi, N. Casali, A. Caminata, Ezio Previtali, S. Zimmermann, S. L. Wagaarachchi, S. Morganti, T. O'Donnell, B. Welliver, K. M. Heeger, G. Fantini, C. Nones, A. Puiu, V. Pettinacci, V. Sharma, D. D'Aguanno, J. Nikkel, N. Chott, Oliviero Cremonesi, Marco Pallavicini, G. Pessina, A. Giuliani, Yu. G. Kolomensky, Ke Han, Reina H. Maruyama, C. Rosenfeld, Stuart J. Freedman, P. Gorla, F. Ferroni, C. Tomei, C. J. Davis, L. Zanotti, Irene Nutini, Evelyn Ferri, Yu-Gang Ma, F. Terranova, N. Moggi, Samuele Sangiorgio, P. T. Surukuchi, A. Nucciotti, L. Pagnanini, C. Alduino, S. Copello, Paolo Carniti, Ettore Fiorini, V. Novati, Andrea Giachero, D. Q. Adams, K. Alfonso, L. Pattavina, N. D. Scielzo, L. Canonica, L. Marini, Vasundhara Singh, J. Johnston, B. Schmidt, B. S. Wang, O. Azzolini, I. Dafinei, M. Sakai, James R. Wilson, F. Bellini, Monica Sisti, R. J. Creswick, Giovanni Benato, Eric B. Norman, T. Napolitano, M. Biassoni, Campani, A, Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Caminata, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Davis, C, Dell'Oro, S, Di Domizio, S, Dompe, V, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Ligi, C, Ma, Y, Ma, L, Marini, L, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nikkel, J, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Ouellet, J, Pagliarone, C, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Sharma, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Zanotti, L, Zimmermann, S, Zucchelli, S, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CUORE, and Département de Physique des Particules (ex SPP) (DPP)
- Subjects
Nuclear and High Energy Physics ,data analysis method ,background: model ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Combinatorics ,CUORE ,double-beta decay: (0neutrino) ,bolometer ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Neutrinoless double beta decay ,010306 general physics ,activity report ,Physics ,010308 nuclear & particles physics ,29.90.+r ,Astronomy and Astrophysics ,Background model ,Atomic and Molecular Physics, and Optics ,tellurium: nuclide ,data management ,Two-neutrino double beta decay ,background model ,two-neutrino double beta decay ,experimental results - Abstract
Author(s): Campani, A; Adams, DQ; Alduino, C; Alfonso, K; Avignone, FT; Azzolini, O; Bari, G; Bellini, F; Benato, G; Biassoni, M; Branca, A; Brofferio, C; Bucci, C; Caminata, A; Canonica, L; Cao, XG; Capelli, S; Cappelli, L; Cardani, L; Carniti, P; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Copello, S; Cosmelli, C; Cremonesi, O; Creswick, RJ; D'Addabbo, A; D'Aguanno, D; Dafinei, I; Davis, CJ; Dell'oro, S; Di Domizio, S; Dompe, V; Fang, DQ; Fantini, G; Faverzani, M; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, MA; Freedman, SJ; Fujikawa, BK; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Gotti, C; Gutierrez, TD; Han, K; Heeger, KM; Huang, RG; Huang, HZ; Johnston, J; Keppel, G; Kolomensky, YG; Ligi, C; Ma, YG; Ma, L; Marini, L; Maruyama, RH; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Nastasi, M; Nikkel, J; Nones, C; Norman, EB; Novati, V; Nucciotti, A; Nutini, I; O'Donnell, T; Ouellet, JL; Pagliarone, CE; Pagnanini, L; Pallavicini, M; Pattavina, L; Pavan, M; Pessina, G; Pettinacci, V; Pira, C; Pirro, S; Pozzi, S | Abstract: The Cryogenic Underground Observatory for Rare Events (CUORE) is a tonne-scale cryogenic experiment located at the Laboratori Nazionali del Gran Sasso that exploits bolometric technique to search for neutrinoless double beta decay (0νββ) of 130Te. The detector consists of a segmented array of 988 natural TeO2 cubic crystals arranged in a cylindrical compact structure of 19 towers. The detector construction was completed in August 2016 and data taking started in Spring 2017. In this work, we present a brief description of the bolometric technique for rare events search and the CUORE detector, then we concentrate on the data analysis results. In this respect, we focus on the procedure for data processing and on the first 0νββ results we obtained from a total TeO2 exposure of 86.3kg yr. Next, we illustrate the main background sources and the CUORE background model, from which we obtain the most precise measurement of 130Te 2νββ half-life to date. Finally, we discuss the improvements achieved with 2018 and 2019 detector optimization campaigns and the current perspectives of our experiment.
- Published
- 2020
- Full Text
- View/download PDF
215. Performance of the low threshold Optimum Trigger on CUORE data
- Author
-
A. Branca, D. Q. Adams, C. Alduino, K. Alfonso, F. T. Avignone III, O. Azzolini, G. Bari, F. Bellini, G. Benato, M. Biassoni, C. Brofferio, C. Bucci, J. Camilleri, A. Caminata, A. Campani, L. Canonica, X. G. Cao, S. Capelli, L. Cappelli, L. Cardani, P. Carniti, N. Casali, D. Chiesa, M. Clemenza, S. Copello, C. Cosmelli, O. Cremonesi, R. J. Creswick, A. D'Addabbo, D. D'Aguanno, I. Dafinei, C. J. Davis, F. Del Corso, S. Dell'Oro, S. Di Domizio, V. Dompè, D. Q. Fang, G. Fantini, M. Faverzani, E. Ferri, F. Ferroni, E. Fiorini, M. A. Franceschi, S. J. Freedman, B. K. Fujikawa, A. Giachero, L. Gironi, A. Giuliani, P. Gorla, C. Gotti, T. D. Gutierrez, K. Han, K. M. Heeger, R. G. Huang, H. Z. Huang, J. Johnston, G. Keppel, Yu. G. Kolomensky, C. Ligi, L. Ma, Y. G. Ma, L. Marini, R. H. Maruyama, Y. Mei, N. Moggi, S. Morganti, T. Napolitano, M. Nastasi, J. Nikkel, C. Nones, E. B. Norman, V. Novati, A. Nucciotti, I. Nutini, T. O'Donnell, J. L. Ouellet, C. E. Pagliarone, L. Pagnanini, M. Pallavicini, L. Pattavina, M. Pavan, G. Pessina, V. Pettinacci, C. Pira, S. Pirro, S. Pozzi, E. Previtali, A. Puiu, C. Rosenfeld, C. Rusconi, M. Sakai, S. Sangiorgio, B. Schmidt, N. D. Scielzo, V. Sharma, V. Singh, M. Sisti, D. Speller, L. Taffarello, F. Terranova, C. Tomei, M. Vignati, S. L. Wagaarachchi, B. S. Wang, B. Welliver, J. Wilson, K. Wilson, L. A. Winslow, L. Zanotti, S. Zimmermann, S. Zucchelli, Branca, A, Adams, D, Alduino, C, Alfonso, K, Avignone III, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Biassoni, M, Brofferio, C, Bucci, C, Camilleri, J, Caminata, A, Campani, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Davis, C, Del Corso, F, Dell'Oro, S, Di Domizio, S, Dompè, V, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Ligi, C, Ma, L, Ma, Y, Marini, L, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nikkel, J, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Ouellet, J, Pagliarone, C, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Sharma, V, Singh, V, Sisti, M, Speller, D, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Zanotti, L, Zimmermann, S, and Zucchelli, S
- Subjects
Physics ,History ,Particle physics ,CUORE ,Optimal Trigger, CUORE, low energy, dark matter, WIMP, neutrino ,Computer Science Applications ,Education - Abstract
The Optimum Trigger (OT) is based on a threshold algorithm applied on waveforms filtered by exploiting the matched filter technique. The OT trigger thresholds improve by 60 – 90% with respect to the thresholds obtained with the standard trigger, ranging between ~ 20 and 100 keV. Low trigger thresholds open the way to Dark Matter searches and to improvements in the neutrinoless double beta decay analysis. Nevertheless, running the OT on CUORE data is demanding from the computational resources point of view. For this reason, the algorithm has been revised and adapted to cope with CUORE data. The work done to implement OT in CUORE and its performances will be discussed.
- Published
- 2020
- Full Text
- View/download PDF
216. Low-Cost CO 2 NDIR Sensors: Performance Evaluation and Calibration Using Machine Learning Techniques.
- Author
-
Dubey R, Telles A, Nikkel J, Cao C, Gewirtzman J, Raymond PA, and Lee X
- Abstract
The study comprehensively evaluates low-cost CO
2 sensors from different price tiers, assessing their performance against a reference-grade instrument and exploring the possibility of calibration using different machine learning techniques. Three sensors (Sunrise AB by Senseair, K30 CO2 by Senseair, and GMP 343 by Vaisala) were tested alongside a reference instrument (Los Gatos precision greenhouse gas analyzer). The results revealed differences in sensor performance, with the higher cost Vaisala sensors exhibiting superior accuracy. Despite its lower price, the Sunrise sensors still demonstrated reasonable accuracy. Meanwhile, the K30 sensor measurements displayed higher variability and noise. Machine learning models, including linear regression, gradient boosting regression, and random forest regression, were employed for sensor calibration. In general, linear regression models performed best for extrapolating data, whereas decision tree-based models were generally more useful in handling non-linear datasets. Notably, a stack ensemble model combining these techniques outperformed the individual models and significantly improved sensor accuracy by approximately 65%. Overall, this study contributes to filling the gap in intercomparing CO2 sensors across different price categories and underscores the potential of machine learning for enhancing sensor accuracy, particularly in low-cost sensor applications.- Published
- 2024
- Full Text
- View/download PDF
217. Erratum: Measurement of the 2νββ Decay Half-Life of ^{130}Te with CUORE [Phys. Rev. Lett. 126, 171801 (2021)].
- Author
-
Adams DQ, Alduino C, Alfonso K, Avignone FT, Azzolini O, Bari G, Bellini F, Benato G, Biassoni M, Branca A, Brofferio C, Bucci C, Camilleri J, Caminata A, Campani A, Canonica L, Cao XG, Capelli S, Cappelli L, Cardani L, Carniti P, Casali N, Chiesa D, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, D'Addabbo A, Dafinei I, Davis CJ, Dell'Oro S, Di Domizio S, Dompè V, Fang DQ, Fantini G, Faverzani M, Ferri E, Ferroni F, Fiorini E, Franceschi MA, Freedman SJ, Fu SH, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Han K, Heeger KM, Huang RG, Huang HZ, Johnston J, Keppel G, Kolomensky YG, Ligi C, Ma L, Ma YG, Marini L, Maruyama RH, Mayer D, Mei Y, Moggi N, Morganti S, Napolitano T, Nastasi M, Nikkel J, Nones C, Norman EB, Nucciotti A, Nutini I, O'Donnell T, Ouellet JL, Pagan S, Pagliarone CE, Pagnanini L, Pallavicini M, Pattavina L, Pavan M, Pessina G, Pettinacci V, Pira C, Pirro S, Pozzi S, Previtali E, Puiu A, Rosenfeld C, Rusconi C, Sakai M, Sangiorgio S, Schmidt B, Scielzo ND, Sharma V, Singh V, Sisti M, Speller D, Surukuchi PT, Taffarello L, Terranova F, Tomei C, Vetter KJ, Vignati M, Wagaarachchi SL, Wang BS, Welliver B, Wilson J, Wilson K, Winslow LA, Zimmermann S, and Zucchelli S
- Abstract
This corrects the article DOI: 10.1103/PhysRevLett.126.171801.
- Published
- 2023
- Full Text
- View/download PDF
218. Search for Boosted Dark Matter in COSINE-100.
- Author
-
Adhikari G, Carlin N, Choi JJ, Choi S, Ezeribe AC, França LE, Ha C, Hahn IS, Hollick SJ, Jeon EJ, Jo JH, Joo HW, Kang WG, Kauer M, Kim BH, Kim HJ, Kim J, Kim KW, Kim SH, Kim SK, Kim WK, Kim YD, Kim YH, Ko YJ, Lee DH, Lee EK, Lee H, Lee HS, Lee HY, Lee IS, Lee J, Lee JY, Lee MH, Lee SH, Lee SM, Lee YJ, Leonard DS, Luan NT, Manzato BB, Maruyama RH, Neal RJ, Nikkel JA, Olsen SL, Park BJ, Park HK, Park HS, Park KS, Park SD, Pitta RLC, Prihtiadi H, Ra SJ, Rott C, Shin KA, Cavalcante DFFS, Scarff A, Spooner NJC, Thompson WG, Yang L, and Yu GH
- Abstract
We search for energetic electron recoil signals induced by boosted dark matter (BDM) from the galactic center using the COSINE-100 array of NaI(Tl) crystal detectors at the Yangyang Underground Laboratory. The signal would be an excess of events with energies above 4 MeV over the well-understood background. Because no excess of events are observed in a 97.7 kg·yr exposure, we set limits on BDM interactions under a variety of hypotheses. Notably, we explored the dark photon parameter space, leading to competitive limits compared to direct dark photon search experiments, particularly for dark photon masses below 4 MeV and considering the invisible decay mode. Furthermore, by comparing our results with a previous BDM search conducted by the Super-Kamionkande experiment, we found that the COSINE-100 detector has advantages in searching for low-mass dark matter. This analysis demonstrates the potential of the COSINE-100 detector to search for MeV electron recoil signals produced by the dark sector particle interactions.
- Published
- 2023
- Full Text
- View/download PDF
219. Tritium Beta Spectrum Measurement and Neutrino Mass Limit from Cyclotron Radiation Emission Spectroscopy.
- Author
-
Ashtari Esfahani A, Böser S, Buzinsky N, Carmona-Benitez MC, Claessens C, de Viveiros L, Doe PJ, Fertl M, Formaggio JA, Gaison JK, Gladstone L, Grando M, Guigue M, Hartse J, Heeger KM, Huyan X, Johnston J, Jones AM, Kazkaz K, LaRoque BH, Li M, Lindman A, Machado E, Marsteller A, Matthé C, Mohiuddin R, Monreal B, Mueller R, Nikkel JA, Novitski E, Oblath NS, Peña JI, Pettus W, Reimann R, Robertson RGH, Rosa De Jesús D, Rybka G, Saldaña L, Schram M, Slocum PL, Stachurska J, Sun YH, Surukuchi PT, Tedeschi JR, Telles AB, Thomas F, Thomas M, Thorne LA, Thümmler T, Tvrznikova L, Van De Pontseele W, VanDevender BA, Weintroub J, Weiss TE, Wendler T, Young A, Zayas E, and Ziegler A
- Abstract
The absolute scale of the neutrino mass plays a critical role in physics at every scale, from the subatomic to the cosmological. Measurements of the tritium end-point spectrum have provided the most precise direct limit on the neutrino mass scale. In this Letter, we present advances by Project 8 to the cyclotron radiation emission spectroscopy (CRES) technique culminating in the first frequency-based neutrino mass limit. With only a cm^{3}-scale physical detection volume, a limit of m_{β}<155 eV/c^{2} (152 eV/c^{2}) is extracted from the background-free measurement of the continuous tritium beta spectrum in a Bayesian (frequentist) analysis. Using ^{83m}Kr calibration data, a resolution of 1.66±0.19 eV (FWHM) is measured, the detector response model is validated, and the efficiency is characterized over the multi-keV tritium analysis window. These measurements establish the potential of CRES for a high-sensitivity next-generation direct neutrino mass experiment featuring low background and high resolution.
- Published
- 2023
- Full Text
- View/download PDF
220. Final Measurement of the ^{235}U Antineutrino Energy Spectrum with the PROSPECT-I Detector at HFIR.
- Author
-
Andriamirado M, Balantekin AB, Bass CD, Bergeron DE, Bernard EP, Bowden NS, Bryan CD, Carr R, Classen T, Conant AJ, Deichert G, Delgado A, Diwan MV, Dolinski MJ, Erickson A, Foust BT, Gaison JK, Galindo-Uribari A, Gilbert CE, Gokhale S, Grant C, Hans S, Hansell AB, Heeger KM, Heffron B, Jaffe DE, Jayakumar S, Ji X, Jones DC, Koblanski J, Kunkle P, Kyzylova O, LaBelle D, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Maricic J, Mendenhall MP, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Nour S, Palomino Gallo JL, Pushin DA, Qian X, Roca C, Rosero R, Searles M, Surukuchi PT, Sutanto F, Tyra MA, Venegas-Vargas D, Weatherly PB, Wilhelmi J, Woolverton A, Yeh M, Zhang C, and Zhang X
- Abstract
This Letter reports one of the most precise measurements to date of the antineutrino spectrum from a purely ^{235}U-fueled reactor, made with the final dataset from the PROSPECT-I detector at the High Flux Isotope Reactor. By extracting information from previously unused detector segments, this analysis effectively doubles the statistics of the previous PROSPECT measurement. The reconstructed energy spectrum is unfolded into antineutrino energy and compared with both the Huber-Mueller model and a spectrum from a commercial reactor burning multiple fuel isotopes. A local excess over the model is observed in the 5-7 MeV energy region. Comparison of the PROSPECT results with those from commercial reactors provides new constraints on the origin of this excess, disfavoring at 2.0 and 3.7 standard deviations the hypotheses that antineutrinos from ^{235}U are solely responsible and noncontributors to the excess observed at commercial reactors, respectively.
- Published
- 2023
- Full Text
- View/download PDF
221. Joint Determination of Reactor Antineutrino Spectra from ^{235}U and ^{239}Pu Fission by Daya Bay and PROSPECT.
- Author
-
An FP, Andriamirado M, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bishai M, Blyth S, Bowden NS, Bryan CD, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Classen T, Conant AJ, Cummings JP, Dalager O, Deichert G, Delgado A, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolinski MJ, Dolzhikov D, Dove J, Dvořák M, Dwyer DA, Erickson A, Foust BT, Gaison JK, Galindo-Uribarri A, Gallo JP, Gilbert CE, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, Hansell AB, He M, Heeger KM, Heffron B, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Koblanski J, Jaffe DE, Jayakumar S, Jen KL, Ji XL, Ji XP, Johnson RA, Jones DC, Kang L, Kettell SH, Kohn S, Kramer M, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Lu X, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Maricic J, Marshall C, McDonald KT, McKeown RD, Mendenhall MP, Meng Y, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Naumov D, Naumova E, Neilson R, Nguyen TMT, Nikkel JA, Nour S, Ochoa-Ricoux JP, Olshevskiy A, Palomino JL, Pan HR, Park J, Patton S, Peng JC, Pun CSJ, Pushin DA, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Searles M, Steiner H, Sun JL, Surukuchi PT, Tmej T, Treskov K, Tse WH, Tull CE, Tyra MA, Varner RL, Venegas-Vargas D, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Weatherly PB, Wei HY, Wei LH, Wen LJ, Whisnant K, White C, Wilhelmi J, Wong HLH, Woolverton A, Worcester E, Wu DR, Wu FL, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JW, Zhang QM, Zhang SQ, Zhang X, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, and Zou JH
- Abstract
A joint determination of the reactor antineutrino spectra resulting from the fission of ^{235}U and ^{239}Pu has been carried out by the Daya Bay and PROSPECT Collaborations. This Letter reports the level of consistency of ^{235}U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent. The combined analysis reduces the degeneracy between the dominant ^{235}U and ^{239}Pu isotopes and improves the uncertainty of the ^{235}U spectral shape to about 3%. The ^{235}U and ^{239}Pu antineutrino energy spectra are unfolded from the jointly deconvolved reactor spectra using the Wiener-SVD unfolding method, providing a data-based reference for other reactor antineutrino experiments and other applications. This is the first measurement of the ^{235}U and ^{239}Pu spectra based on the combination of experiments at low- and highly enriched uranium reactors.
- Published
- 2022
- Full Text
- View/download PDF
222. Joint Measurement of the ^{235}U Antineutrino Spectrum by PROSPECT and STEREO.
- Author
-
Almazán H, Andriamirado M, Balantekin AB, Band HR, Bass CD, Bergeron DE, Bernard L, Blanchet A, Bonhomme A, Bowden NS, Bryan CD, Buck C, Classen T, Conant AJ, Deichert G, Del Amo Sanchez P, Delgado A, Diwan MV, Dolinski MJ, El Atmani I, Erickson A, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Hans S, Hansell AB, Heeger KM, Heffron B, Jaffe DE, Jayakumar S, Ji X, Jones DC, Koblanski J, Kyzylova O, Labit L, Lamblin J, Lane CE, Langford TJ, LaRosa J, Letourneau A, Lhuillier D, Licciardi M, Lindner M, Littlejohn BR, Lu X, Maricic J, Materna T, Mendenhall MP, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Nour S, Palomino JL, Pessard H, Pushin DA, Qian X, Réal JS, Ricol JS, Roca C, Rogly R, Rosero R, Salagnac T, Savu V, Schoppmann S, Searles M, Sergeyeva V, Soldner T, Stutz A, Surukuchi PT, Tyra MA, Varner RL, Venegas-Vargas D, Vialat M, Weatherly PB, White C, Wilhelmi J, Woolverton A, Yeh M, Zhang C, and Zhang X
- Abstract
The PROSPECT and STEREO collaborations present a combined measurement of the pure ^{235}U antineutrino spectrum, without site specific corrections or detector-dependent effects. The spectral measurements of the two highest precision experiments at research reactors are found to be compatible with χ^{2}/ndf=24.1/21, allowing a joint unfolding of the prompt energy measurements into antineutrino energy. This ν[over ¯]_{e} energy spectrum is provided to the community, and an excess of events relative to the Huber model is found in the 5-6 MeV region. When a Gaussian bump is fitted to the excess, the data-model χ^{2} value is improved, corresponding to a 2.4σ significance.
- Published
- 2022
- Full Text
- View/download PDF
223. Measurement of the 2νββ Decay Half-Life of ^{130}Te with CUORE.
- Author
-
Adams DQ, Alduino C, Alfonso K, Avignone FT, Azzolini O, Bari G, Bellini F, Benato G, Biassoni M, Branca A, Brofferio C, Bucci C, Camilleri J, Caminata A, Campani A, Canonica L, Cao XG, Capelli S, Cappelli L, Cardani L, Carniti P, Casali N, Chiesa D, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, D'Addabbo A, Dafinei I, Davis CJ, Dell'Oro S, Di Domizio S, Dompè V, Fang DQ, Fantini G, Faverzani M, Ferri E, Ferroni F, Fiorini E, Franceschi MA, Freedman SJ, Fu SH, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Han K, Heeger KM, Huang RG, Huang HZ, Johnston J, Keppel G, Kolomensky YG, Ligi C, Ma L, Ma YG, Marini L, Maruyama RH, Mayer D, Mei Y, Moggi N, Morganti S, Napolitano T, Nastasi M, Nikkel J, Nones C, Norman EB, Nucciotti A, Nutini I, O'Donnell T, Ouellet JL, Pagan S, Pagliarone CE, Pagnanini L, Pallavicini M, Pattavina L, Pavan M, Pessina G, Pettinacci V, Pira C, Pirro S, Pozzi S, Previtali E, Puiu A, Rosenfeld C, Rusconi C, Sakai M, Sangiorgio S, Schmidt B, Scielzo ND, Sharma V, Singh V, Sisti M, Speller D, Surukuchi PT, Taffarello L, Terranova F, Tomei C, Vetter KJ, Vignati M, Wagaarachchi SL, Wang BS, Welliver B, Wilson J, Wilson K, Winslow LA, Zimmermann S, and Zucchelli S
- Abstract
We measured two-neutrino double beta decay of ^{130}Te using an exposure of 300.7 kg yr accumulated with the CUORE detector. Using a Bayesian analysis to fit simulated spectra to experimental data, it was possible to disentangle all the major background sources and precisely measure the two-neutrino contribution. The half-life is in agreement with past measurements with a strongly reduced uncertainty: T_{1/2}^{2ν}=7.71_{-0.06}^{+0.08}(stat)_{-0.15}^{+0.12}(syst)×10^{20} yr. This measurement is the most precise determination of the ^{130}Te 2νββ decay half-life to date.
- Published
- 2021
- Full Text
- View/download PDF
224. Response from Authors to the Letter to the Editor.
- Author
-
Appendino JP, Baker S, Chapman KM, Dykstra T, Hussein T, Jones ML, Mezei MM, Mirsattari SM, Ng M, Nikkel J, Obradovic V, Phan C, Robinson L, Scott A, Téllez-Zenteno J, Van Niekerk M, Venance S, and Moore F
- Subjects
- Canada, Humans, Laboratories, Neurophysiology, SARS-CoV-2, COVID-19, Pandemics
- Published
- 2021
- Full Text
- View/download PDF
225. Practice Guidelines for Canadian Neurophysiology Laboratories During the COVID-19 Pandemic.
- Author
-
Appendino JP, Baker SK, Chapman KM, Dykstra T, Hussein T, Jones ML, Mezei MM, Mirsattari SM, Ng M, Nikkel J, Obradovic V, Phan C, Robinson L, Scott A, Tellez-Zenteno J, Van Niekerk M, Venance S, and Moore F
- Subjects
- Canada, Deep Brain Stimulation, Diagnostic Techniques, Neurological, Electrodiagnosis methods, Humans, Infection Control methods, Patient Isolators, Personal Protective Equipment, Physical Distancing, SARS-CoV-2, Triage methods, Vagus Nerve Stimulation, COVID-19 prevention & control, Electroencephalography methods, Electromyography methods, Neural Conduction
- Abstract
The COVID-19 pandemic has had a major impact on clinical practice. Safe standards of practice are essential to protect health care workers while still allowing them to provide good care. The Canadian Society of Clinical Neurophysiologists, the Canadian Association of Electroneurophysiology Technologists, the Association of Electromyography Technologists of Canada, the Board of Registration of Electromyography Technologists of Canada, and the Canadian Board of Registration of Electroencephalograph Technologists have combined to review current published literature about safe practices for neurophysiology laboratories. Herein, we present the results of our review and provide our expert opinion regarding the safe practice of neurophysiology during the COVID-19 pandemic in Canada.
- Published
- 2021
- Full Text
- View/download PDF
226. Improved Limit on Neutrinoless Double-Beta Decay in ^{130} Te with CUORE.
- Author
-
Adams DQ, Alduino C, Alfonso K, Avignone FT, Azzolini O, Bari G, Bellini F, Benato G, Biassoni M, Branca A, Brofferio C, Bucci C, Caminata A, Campani A, Canonica L, Cao XG, Capelli S, Cappelli L, Cardani L, Carniti P, Casali N, Chiesa D, Chott N, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, D'Addabbo A, D'Aguanno D, Dafinei I, Davis CJ, Dell'Oro S, Di Domizio S, Dompè V, Fang DQ, Fantini G, Faverzani M, Ferri E, Ferroni F, Fiorini E, Franceschi MA, Freedman SJ, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Han K, Heeger KM, Huang RG, Huang HZ, Johnston J, Keppel G, Kolomensky YG, Ligi C, Ma YG, Ma L, Marini L, Maruyama RH, Mei Y, Moggi N, Morganti S, Napolitano T, Nastasi M, Nikkel J, Nones C, Norman EB, Novati V, Nucciotti A, Nutini I, O'Donnell T, Ouellet JL, Pagliarone CE, Pagnanini L, Pallavicini M, Pattavina L, Pavan M, Pessina G, Pettinacci V, Pira C, Pirro S, Pozzi S, Previtali E, Puiu A, Rosenfeld C, Rusconi C, Sakai M, Sangiorgio S, Schmidt B, Scielzo ND, Sharma V, Singh V, Sisti M, Speller D, Surukuchi PT, Taffarello L, Terranova F, Tomei C, Vignati M, Wagaarachchi SL, Wang BS, Welliver B, Wilson J, Wilson K, Winslow LA, Zanotti L, Zimmermann S, and Zucchelli S
- Abstract
We report new results from the search for neutrinoless double-beta decay in ^{130} Te with the CUORE detector. This search benefits from a fourfold increase in exposure, lower trigger thresholds, and analysis improvements relative to our previous results. We observe a background of (1.38±0.07)×10^{-2} counts/(keV kg yr)) in the 0νββ decay region of interest and, with a total exposure of 372.5 kg yr, we attain a median exclusion sensitivity of 1.7×10^{25} yr. We find no evidence for 0νββ decay and set a 90% credibility interval Bayesian lower limit of 3.2×10^{25} yr on the ^{130} Te half-life for this process. In the hypothesis that 0νββ decay is mediated by light Majorana neutrinos, this results in an upper limit on the effective Majorana mass of 75-350 meV, depending on the nuclear matrix elements used.
- Published
- 2020
- Full Text
- View/download PDF
227. Nonfuel Antineutrino Contributions in the High Flux Isotope Reactor.
- Author
-
Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bowden NS, Brodsky JP, Bryan CD, Classen T, Conant AJ, Deichert G, Diwan MV, Dolinski MJ, Erickson A, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Hackett BT, Hans S, Hansell AB, Heeger KM, Heffron B, Jaffe DE, Ji X, Jones DC, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Maricic J, Mendenhall MP, Milincic R, Mitchell I, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Norcini D, Nour S, Palomino-Gallo JL, Pushin DA, Qian X, Romero-Romero E, Rosero R, Surukuchi PT, Tyra MA, Varner RL, White C, Wilhelmi J, Woolverton A, Yeh M, Zhang A, Zhang C, and Zhang X
- Abstract
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of ν ¯ e is important when making theoretical predictions. One source of ν ¯ e that is often neglected arises from the irradiation of the nonfuel materials in reactors. The ν ¯ e rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible ν ¯ e sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the ν ¯ e source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel ν ¯ e contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8-2.0 MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel ν ¯ e contribution.
- Published
- 2020
- Full Text
- View/download PDF
228. Measurement of the Antineutrino Spectrum from ^{235}U Fission at HFIR with PROSPECT.
- Author
-
Ashenfelter J, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bowden NS, Brodsky JP, Bryan CD, Cherwinka JJ, Classen T, Conant AJ, Cox AA, Davee D, Dean D, Deichert G, Diwan MV, Dolinski MJ, Erickson A, Febbraro M, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Gilje KE, Hackett BT, Hans S, Hansell AB, Heeger KM, Insler J, Jaffe DE, Ji X, Jones DC, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Martinez Caicedo DA, Matta JT, McKeown RD, Mendenhall MP, Minock JM, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Norcini D, Nour S, Pushin DA, Qian X, Romero-Romero E, Rosero R, Sarenac D, Surukuchi PT, Telles AB, Tyra MA, Varner RL, Viren B, White C, Wilhelmi J, Wise T, Yeh M, Yen YR, Zhang A, Zhang C, and Zhang X
- Abstract
This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.
- Published
- 2019
- Full Text
- View/download PDF
229. Update on Minimal Standards for Electroencephalography in Canada: A Review by the Canadian Society of Clinical Neurophysiologists.
- Author
-
Dash D, Dash C, Primrose S, Hernandez-Ronquillo L, Moien-Afshari F, Ladino LD, Appendino JP, Mazepa L, Elliott C, Mirsattari SM, Federico P, Bui E, Hunter G, RamachandranNair R, Sharma R, Melendres P, Nikkel J, Nguyen DK, Almubarak S, Rigby M, and Téllez-Zenteno JF
- Subjects
- Canada, Electroencephalography methods, Epilepsy surgery, Humans, Societies, Medical standards, Brain physiopathology, Electroencephalography standards, Epilepsy diagnosis
- Abstract
Surface electroencephalogram (EEG) recording remains the gold standard for noninvasive assessment of electrical brain activity. It is the most efficient way to diagnose and classify epilepsy syndromes as well as define the localization of the epileptogenic zone. The EEG is useful for management decisions and for establishing prognosis in some types of epilepsy. Electroencephalography is an evolving field in which new methods are being introduced. The Canadian Society of Clinical Neurophysiologists convened an expert panel to develop new national minimal guidelines. A comprehensive evidence review was conducted. This document is organized into 10 sections, including indications, recommendations for trained personnel, EEG yield, paediatric and neonatal EEGs, laboratory minimal standards, requisitions, reports, storage, safety measures, and quality assurance.
- Published
- 2017
- Full Text
- View/download PDF
230. First results from the LUX dark matter experiment at the Sanford underground research facility.
- Author
-
Akerib DS, Araújo HM, Bai X, Bailey AJ, Balajthy J, Bedikian S, Bernard E, Bernstein A, Bolozdynya A, Bradley A, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Clark K, Coffey T, Currie A, Curioni A, Dazeley S, de Viveiros L, Dobi A, Dobson J, Dragowsky EM, Druszkiewicz E, Edwards B, Faham CH, Fiorucci S, Flores C, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MG, Hall C, Hanhardt M, Hertel SA, Horn M, Huang DQ, Ihm M, Jacobsen RG, Kastens L, Kazkaz K, Knoche R, Kyre S, Lander R, Larsen NA, Lee C, Leonard DS, Lesko KT, Lindote A, Lopes MI, Lyashenko A, Malling DC, Mannino R, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad J, Morii M, Murphy AS, Nehrkorn C, Nelson H, Neves F, Nikkel JA, Ott RA, Pangilinan M, Parker PD, Pease EK, Pech K, Phelps P, Reichhart L, Shutt T, Silva C, Skulski W, Sofka CJ, Solovov VN, Sorensen P, Stiegler T, O'Sullivan K, Sumner TJ, Svoboda R, Sweany M, Szydagis M, Taylor D, Tennyson B, Tiedt DR, Tripathi M, Uvarov S, Verbus JR, Walsh N, Webb R, White JT, White D, Witherell MS, Wlasenko M, Wolfs FL, Woods M, and Zhang C
- Abstract
The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.
- Published
- 2014
- Full Text
- View/download PDF
231. Visualization study of counterflow in superfluid 4He using metastable helium molecules.
- Author
-
Guo W, Cahn SB, Nikkel JA, Vinen WF, and McKinsey DN
- Abstract
Heat is transferred in superfluid 4He via a process known as thermal counterflow. It has been known for many years that above a critical heat current the superfluid component in this counterflow becomes turbulent. It has been suspected that the normal-fluid component may become turbulent as well, but experimental verification is difficult without a technique for visualizing the flow. Here we report a series of visualization studies on the normal-fluid component in a thermal counterflow performed by imaging the motion of seeded metastable helium molecules using a laser-induced-fluorescence technique. We present evidence that the flow of the normal fluid is indeed turbulent at relatively large velocities. Thermal counterflow in which both components are turbulent presents us with a theoretically challenging type of turbulent behavior that is new to physics.
- Published
- 2010
- Full Text
- View/download PDF
232. Detection and imaging of He2 molecules in superfluid helium.
- Author
-
Rellergert WG, Cahn SB, Garvan A, Hanson JC, Lippincott WH, Nikkel JA, and McKinsey DN
- Abstract
We present data that show a cycling transition can be used to detect and image metastable He2 triplet molecules in superfluid helium. We demonstrate that limitations on the cycling efficiency due to the vibrational structure of the molecule can be mitigated by the use of repumping lasers. Images of the molecules obtained using the method are also shown. This technique gives rise to a new kind of ionizing radiation detector. The use of He2 triplet molecules as tracer particles in the superfluid promises to be a powerful tool for visualization of both quantum and classical turbulence in liquid helium.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.