251. Based on FCN and DenseNet Framework for the Research of Rice Pest Identification Methods.
- Author
-
Gong, He, Liu, Tonghe, Luo, Tianye, Guo, Jie, Feng, Ruilong, Li, Ji, Ma, Xiaodan, Mu, Ye, Hu, Tianli, Sun, Yu, Li, Shijun, Wang, Qinglan, and Guo, Ying
- Subjects
- *
RICE diseases & pests , *IMAGE recognition (Computer vision) , *PEST control , *RANDOM fields , *FOOD crops - Abstract
One of the most important food crops is rice. For this reason, the accurate identification of rice pests is a critical foundation for rice pest control. In this study, we propose an algorithm for automatic rice pest identification and classification based on fully convolutional networks (FCNs) and select 10 rice pests for experiments. First, we introduce a new encoder–decoder in the FCN and a series of sub-networks connected by jump paths that combine long jumps and shortcut connections for accurate and fine-grained insect boundary detection. Secondly, the network also integrates a conditional random field (CRF) module for insect contour refinement and boundary localization, and finally, a novel DenseNet framework that introduces an attention mechanism (ECA) is proposed to focus on extracting insect edge features for effective rice pest classification. The proposed model was tested on the data set collected in this paper, and the final recognition accuracy was 98.28%. Compared with the other four models in the paper, the proposed model in this paper is more accurate, faster, and has good robustness; meanwhile, it can be demonstrated from our results that effective segmentation of insect images before classification can improve the detection performance of deep-learning-based classification systems. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF