201. A super-massive Neptune-sized planet.
- Author
-
Naponiello L, Mancini L, Sozzetti A, Bonomo AS, Morbidelli A, Dou J, Zeng L, Leinhardt ZM, Biazzo K, Cubillos PE, Pinamonti M, Locci D, Maggio A, Damasso M, Lanza AF, Lissauer JJ, Collins KA, Carter PJ, Jensen ELN, Bignamini A, Boschin W, Bouma LG, Ciardi DR, Cosentino R, Crossfield I, Desidera S, Dumusque X, Fiorenzano AFM, Fukui A, Giacobbe P, Gnilka CL, Ghedina A, Guilluy G, Harutyunyan A, Howell SB, Jenkins JM, Lund MB, Kielkopf JF, Lester KV, Malavolta L, Mann AW, Matson RA, Matthews EC, Nardiello D, Narita N, Pace E, Pagano I, Palle E, Pedani M, Seager S, Schlieder JE, Schwarz RP, Shporer A, Twicken JD, Winn JN, Ziegler C, and Zingales T
- Abstract
Neptune-sized planets exhibit a wide range of compositions and densities, depending on factors related to their formation and evolution history, such as the distance from their host stars and atmospheric escape processes. They can vary from relatively low-density planets with thick hydrogen-helium atmospheres
1,2 to higher-density planets with a substantial amount of water or a rocky interior with a thinner atmosphere, such as HD 95338 b (ref.3 ), TOI-849 b (ref.4 ) and TOI-2196 b (ref.5 ). The discovery of exoplanets in the hot-Neptune desert6 , a region close to the host stars with a deficit of Neptune-sized planets, provides insights into the formation and evolution of planetary systems, including the existence of this region itself. Here we show observations of the transiting planet TOI-1853 b, which has a radius of 3.46 ± 0.08 Earth radii and orbits a dwarf star every 1.24 days. This planet has a mass of 73.2 ± 2.7 Earth masses, almost twice that of any other Neptune-sized planet known so far, and a density of 9.7 ± 0.8 grams per cubic centimetre. These values place TOI-1853 b in the middle of the Neptunian desert and imply that heavy elements dominate its mass. The properties of TOI-1853 b present a puzzle for conventional theories of planetary formation and evolution, and could be the result of several proto-planet collisions or the final state of an initially high-eccentricity planet that migrated closer to its parent star., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF