182 results on '"Ihlemann, Jörn"'
Search Results
152. Vergleichende Messungen und Simulationen annähernd homogener Belastungsverteilungen
- Author
-
Alshuth, Thomas, primary, Hohl, Carsten, additional, and Ihlemann, Jörn, additional
- Published
- 2007
- Full Text
- View/download PDF
153. Constitutive Generalization of a Microstructure-Based Model for Filled Elastomers.
- Author
-
Lorenz, Hagen, Freund, Michael, Juhre, Daniel, Ihlemann, Jörn, and Klüppel, Manfred
- Published
- 2011
- Full Text
- View/download PDF
154. Generalization of one-dimensional material models for the finite element method.
- Author
-
Freund, Michael and Ihlemann, Jörn
- Subjects
- *
FINITE element method , *AXIAL loads , *ALGORITHMS , *NUMERICAL analysis , *INHOMOGENEOUS materials , *MATHEMATICAL continuum - Abstract
The concept of representative directions is intended to generalize one-dimensional material models for uniaxial tension to complete three-dimensional constitutive models for the finite element method. The concept is applicable to any model which is able to describe uniaxial loadings, even to those for inelastic material behavior without knowing the free energy. The typical characteristics of the respected material class are generalized in a remarkable similarity to the input model. The algorithm has already been implemented into the finite element systems ABAQUS and MSC.MARC considering several methods to increase the numerical efficiency. The implementation enables finite element simulations of inhomogeneous stress conditions within technical components, though the input model predicts uniaxial material behavior only. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
155. Finite Element Models for textile reinforced Rubber Components.
- Author
-
Heinrich, Nina, Donner, Hendrik, and Ihlemann, Jörn
- Subjects
FINITE element method ,REINFORCEMENT of rubber ,TEXTILES ,FILLER materials ,AIR suspension for automobiles - Published
- 2018
156. Analytical tangents for arbitrary material laws derived from rheological models at large deformations.
- Author
-
Gypstuhl, Richard, Wulf, Hans, Landgraf, Ralf, and Ihlemann, Jörn
- Subjects
- *
DIFFERENTIAL equations , *DEFORMATIONS (Mechanics) , *ORDINARY differential equations - Abstract
The development of suitable material laws for various material classes is an essential preliminary task for conducting realistic simulations. Within the framework of large deformations, one recognized approach is the utilization of rheological connections allowing the construction of arbitrary models. A common method to calculate the stress response of such a material model is to formulate a set of algebraic and ordinary differential equations and to solve them numerically. However, in this work, only stress relations between different rheological elements are formulated and directly solved by a numeric algorithm without the need to derive the typical system of algebraic/differential equations. The required derivatives for the solution of these equations for this algorithm and the stiffness of the material model are calculated analytically following the same general principle as the algorithm calculating the stress response. This improves stability and computation effort compared to a forward difference scheme. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
157. Regularization for the inversion of fibre Bragg grating spectra.
- Author
-
Gerth, Daniel, Hannusch, Susann, Ernst, Oliver G., and Ihlemann, Jörn
- Subjects
- *
BRAGG gratings , *INVERSE problems , *NONLINEAR equations , *FIBERS , *REGULARIZATION parameter , *MATHEMATICAL regularization - Abstract
Fibre Bragg Gratings have become widespread measurement devices in engineering and other fields of application. In all but a few cases, the relation between cause and effect is simplified to a proportional model. However, at its mathematical core lies a nonlinear inverse problem which appears not to have received much attention in the literature. In this paper, we present this core problem to the mathematical community and provide a first report on opportunities and limitations of a regularization approach. In particular, we show that difficulties arise from non-uniqueness and the absence of established parameter selection rules for nonlinear inverse problems with multiple regularization parameters. Nevertheless, the paper takes a first step toward extracting more information from a single FBG measurement. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
158. Comparative investigation on the mechanical behavior of injection molded and 3D-printed thermoplastic polyurethane.
- Author
-
Oelsch, Erik, Landgraf, Ralf, Jankowsky, Lysander, Kausch, Martin, Hoyer, Stefan, Drossel, Welf-Guntram, and Ihlemann, Jörn
- Subjects
- *
POLYURETHANES , *IMPACT (Mechanics) , *THREE-dimensional printing , *OPTICAL measurements , *THERMOPLASTIC composites - Abstract
3D printing opens up new possibilities for the production of polymeric structures that would not be possible with injection molding. However, it is known that the manufacturing method might have an impact on the mechanical properties of manufactured components. To this end, the mechanical behavior of test specimens made of thermoplastic polyurethane is compared for two different manufacturing methods. In particular, the SEAM technology (screw extrusion additive manufacturing) is compared to a conventional injection molding process. Uniaxial tension test specimens from both manufacturing methods are analyzed in two testing sequences (multi-hysteresis tests to analyze inelastic properties and uniaxial tension until rupture). To get as less perturbation as possible, the 3D-printed samples are printed with only one strand per layer. Moreover, a correction approach based on optical measurements is applied to determine the true cross-sectional area of the test specimens. The mechanical tests reveal that the inelastic material behavior is the same for both manufacturing methods. Instead, 3D-printed specimens show lower maximal stretch values at rupture and an increased variance in the results, which is related to the surface structure of 3D-printed specimens. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
159. Experimental and numerical analysis of cord–elastomer composites.
- Author
-
Weiser, Stephan, Lehmann, Thomas, Landgraf, Ralf, Goldberg, Niels, Donner, Hendrik, and Ihlemann, Jörn
- Subjects
- *
DIGITAL image correlation , *NUMERICAL analysis , *YARN , *ELASTOMERS - Abstract
In this paper, experimental and numerical investigations on cord–elastomer composites are presented. A finite-element model is introduced, which was developed within the framework of an industrial project. The model is able to simulate an elastomer matrix with inserted cords as load bearing elements and to predict the strains and stresses in cord and elastomer sections. The inelastic material behavior of the elastomer matrix and the yarns is described by corresponding material models suitable for large deformation processes. With the help of a specially developed demonstrator bellows, which is similar to an air spring, the simulation results are compared with experiments. For this purpose, the digital image correlation method is used to determine the deformations on the outer surface of the demonstrator bellows and to calculate the strains on and between the cords. The comparison of the results shows that the employed simulation method is very well suited to predict the strains in these cord–elastomer composites. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
160. Determination of the strength of polymer-metal interfaces under mixed mode loading using butt-bonded hollow cylinders.
- Author
-
Saborowski, Erik, Kießling, Robert, Dittes, Axel, Paczkowski, Gerd, Ihlemann, Jörn, and Lampke, Thomas
- Subjects
- *
CYLINDER (Shapes) , *TENSILE strength , *COHESIVE strength (Mechanics) , *PARAMETER estimation , *FINITE element method - Abstract
Abstract This contribution deals with the investigation of a novel testing approach for identifying the strength of polymer-metal interfaces under shear, tensile and combined shear-tensile load. To this end, a specimen geometry, being deployable independent on the material pairing, is determined by a simulative parameter study. Within the according finite element simulations, the cohesive zone approach is applied for the interface and a user-defined material model for the polymer. The simulation results are validated from an aluminum/polyamide 6 hybrid manufactured by hot pressing. Here, a NiAl5 thermal spray layer is utilized as mechanical adhesion promoter. The numerical as well as the experimental results prove that the identified geometry is well suited to determine the strength of polymer-metal interfaces. Furthermore, the experimental results reveal that the quadratic stress damage initiation criterion for the cohesive zone model is not appropriate for the investigated interface. Consequently, an alternative damage initiation criterion is proposed. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
161. Experiments, hyperelastic modeling and finite element simulation of 3D‐printed thermoplastic polyurethane.
- Author
-
Landgraf, Ralf, Oelsch, Erik, Steiniger, Vincent, and Ihlemann, Jörn
- Subjects
- *
FINITE element method , *POLYURETHANES , *INJECTION molding , *STRESS concentration , *NUMERICAL analysis - Abstract
A combined experimental and numerical investigation on the mechanical behavior of 3D‐printed thermoplastic polyurethane is presented. In particular, the behavior under monotonic loading until rupture is considered. For this purpose, tensile test specimens are analyzed, which were produced by conventional injection molding and by an extrusion‐based additive manufacturing process. The additively manufactured test specimens have notched surfaces that influence the failure behavior due to stress and strain concentrations. For the numerical analysis, a finite element modeling approach is presented with which the experiments are simulated. It is shown that the tensile curves can be simulated using a hyperelastic material model and that first indicators can be found that enable a prediction of failure under monotonic tensile loading. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
162. FE-Modellierung von Elastomerkomponenten mit textilen Verstärkungscorden am Beispiel von Luftfedern
- Author
-
Heinrich, Nina, Ihlemann, Jörn, Wegener, Konrad, and Technische Universität Chemnitz
- Subjects
Luftfeder, Cord-Elastomer-Verbund, FEM, Cordgeometrie, Multifilamentgarn, transver- sal isotrope Hyperelastizität, Zug-Druck-Anisotropie, Submodellierung ,Luftfeder ,Cord ,Multifilamentgarn ,Gummi ,Finite-Elemente-Methode ,ddc:621.3 ,ddc:620 ,air spring, cord-rubber-composite, FEM, cord geometry, multifilament yarn, transver- sally isotropic hyperelasticity, tension-compression anisotropy, submodeling - Abstract
Neben Reifen, Riemen und Schläuchen zählen speziell auch die Balgwände von Luftfedern zu den Kompositen, da deren weiche Elastomermatrix zur Verstärkung Gewebelagen aus textilen Corden enthält. Diese Verstärkungsträger bestehen aus miteinander verzwirnten Garnen, die ihrerseits einen Zwirn aus polymeren Filamenten darstellen. Luftfederbälge weisen dementsprechend eine hochkomplexe innere Geometrie auf und sind zudem durch stark anisotropes, nichtlineares Materialverhalten gekennzeichnet. Für die strukturmechanische Simulation von Luftfedern mit der Finite-Elemente-Methode (FEM) werden in der vorliegenden Arbeit neuartige, hochauflösende Modelle entwickelt, die diesen Eigenschaften Rechnung tragen. Zunächst wird ein mathematisches Modell formuliert, das die verzwirnte Geometrie von Corden auf allgemeinen räumlichen Bahnkurven beschreibt und mithilfe dessen sich auch die lokale Orientierung der Filamente bestimmen lässt. Zur konstitutiven Modellierung des Filamentmaterials wird zudem ein transversal isotropes, hyperelastisches Materialmodell so modifiziert, dass bei Druckbelastung in Filamentrichtung nur noch die der Regularisierung dienende, isotrope Grundsteifigkeit zum Tragen kommt. Das Geometriemodell der Corde ist die Basis für deren dreidimensionale Abbildung in FE-Netzen von Luftfederbälgen. Als erster Schwerpunkt wird ein auf zyklischer Symmetrie basierendes Streifenmodell entwickelt, das die Cordgeometrie im gesamten Balg vollständig auflöst. Ein besonderes Augenmerk gilt dabei der Generierung konformer Netze, um die Grenzflächen zwischen Matrix und Corden exakt darzustellen. Das Streifenmodell ermöglicht somit detaillierte Analysen zur lokalen Verteilung von Spannungen und Verzerrungen im Inneren der Balgwand. Als zweiter Schwerpunkt wird diese Art der Modellierung auf einen kleinen rechteckigen Ausschnitt der Balgwand übertragen. Dieser Teppich ist als Submodell konzipiert, das Verschiebungen für seine Schnittränder aus einem vereinfachten Globalmodell bezieht und demzufolge die Analyse allgemeiner, nicht axialsymmetrischer Lastfälle möglich macht. Abschließend werden die Modelle anhand einer Rollbalgluftfeder für Busanwendungen eingehend untersucht und einem Praxistest zum Vergleich zweier Konstruktionsvarianten unterzogen. Tires, belts, hoses and, in particular, air spring bellows are regarded as composites due to layers of reinforcing textile cords that are embedded in a soft elastomer matrix. These cords are produced by twisting yarns which, for their part, represent a twisted structure of polymeric filaments. Hence, air spring bellows feature a highly complex internal geometry as well as strongly anisotropic, nonlinear material behavior. For structural simulations of air springs by means of the finite element method (FEM), new high resolution models are developed here, which reflect all the aforementioned properties. At first, a mathematical model capable of representing the twisted geometry of cords on three-dimensional curves is introduced, which also allows to derive local filament orientations. For the constitutive description of filament material, a transversally isotropic, hyperelastic material model is modified so that only the small isotropic stiffness introduced for regularization remains in case of compressive loads in filament direction. The cord geometry model serves as the basis for their three-dimensional representation in FE meshes of air spring bellows. Firstly, the focus lies on developing a slice model relying on cyclic symmetry, which takes cord geometry into account throughout the entire bellows. Special emphasis is put on building conforming meshes in order to incorporate all material interfaces explicitly. As a result, the slice model allows for detailed analyses of local stress and strain distribution inside the bellows. Secondly, this type of modeling is applied to a rectangular section of the bellows. This carpet is conceived as a submodel acquiring the displacements to be imposed on its cut faces from a simplified global model, and therefore provides the opportunity to analyze general load cases not complying with axial symmetry. Based on a rolling lobe air spring used in bus applications, both models are examined thoroughly and, at last, subjected to a practical test comparing two different designs.
- Published
- 2020
163. Thermophysical properties and material modelling of acrylic bone cements used in vertebroplasty.
- Author
-
Kolmeder, Sebastian, Lion, Alexander, Landgraf, Ralf, and Ihlemann, Jörn
- Subjects
- *
THERMOPHYSICAL properties , *ACRYLIC resins , *BONE cements , *OSTEOPOROSIS , *SURGICAL complications , *CALORIMETRY , *FINITE element method , *MATHEMATICAL models , *TEMPERATURE effect - Abstract
The stabilization of osteoporotic vertebrae with acrylic bone cement, called vertebroplasty, is a common procedure in modern surgery. However, the thermomechanical-chemically coupled material behaviour of curing bone cements makes the application even for experienced surgeons difficult and can lead to potential complications like heat necrosis, leaking bone cement, embolisms and postoperative load shifting. In order to reduce these potential complications, to minimize the risks and to better understand the occurring effects, the thermophysical properties of a commercial acrylic bone cement were investigated in detail using differential scanning calorimetry, volumetric dilatometry and temperature controlled rheometry. More specifically, the reaction kinetics, the specific heat, the thermal conductivity, the thermal expansion, the chemical shrinkage as well as the mechanical behaviour was studied during the reaction process of the bone cement. Furthermore, the explored material behaviour is described by a customized material model that takes into account all observed effects. With the aid of this model the inhomogeneous chemical, thermal and mechanical states that appear during the application and curing of acrylic bone cements, can be studied by finite element treatment. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
164. Modellierung des mechanischen Verhaltens der Komponenten eines intrinsischen Hybridverbundes
- Author
-
Kießling, Robert, Ihlemann, Jörn, Lion, Alexander, and Technische Universität Chemnitz
- Subjects
Materialmodellierung, große Deformationen, rheologische Modelle, Finite-Elemente-Methode, intrinsischer Hybridverbund, Aluminium, Polyamid, Faserverstärkung, Interface ,ddc:621.3 ,material modelling, large strains, rheological models, finite element method, intrinsic hybrid composite, aluminium, polyamide, fibre reinforcement, interface ,ddc:620 ,Materialmodellierung ,Finite-Elemente-Methode ,Hybridwerkstoff ,Aluminium ,Polyamide ,Faserverstärkung ,Interface - Abstract
Durch die Kombination verschiedener Werkstoffklassen ermöglichen Hybridverbunde die Entwicklung von Strukturbauteilen, die sich beispielsweise durch eine hohe Festigkeit bei einem gleichzeitig geringen Gewicht auszeichnen. Trotz des großen Einsatzpotentials wurden Hybridverbunde, begründet durch eine kostenintensive und zeitaufwendige Fertigung, bislang nicht für Großserienbauteile vorgesehen. Mit der Konzeption intrinsischer, das heißt einstufiger, Produktionsprozesse wird es jedoch gelingen die Attraktivität zu steigern und damit die Anwendung von Hybridverbunden unter anderem auch in der Automobilindustrie zu etablieren. Exemplarisch soll im Rahmen dieser Arbeit die Entwicklung eines intrinsischen Hybridverbundes für crashbelastete Strukturbauteile simulativ begleitet werden. Der dabei betrachtete Hybridverbund besteht aus einem endlosfaserverstärktem Kunststoff, in den ein metallischer Einleger eingebracht ist. Zur Realisierung der Anbindung der Komponenten sieht das Konzept des Hybridverbundes die Kombination von Form- und Stoffschluss vor. Dabei resultiert der Stoffschluss aus der Beschichtung des metallischen Einlegers, die die Ausbildung eines Interface bewirkt. Zur Realisierung des Formschlusses werden während des überlagerten Umformprozesses lokal Formschlusselemente des metallischen Einlegers in den endlosfaserverstärkten Kunststoff gepresst. Dadurch weisen die resultierenden Bauteile eine komplexe innere Struktur auf, die die simulative Analyse und damit die Bauteilauslegung erschwert. Das Ziel der vorliegenden Arbeit besteht in der Modellierung und Simulation dieses intrinsischen Hybridverbundes. Dazu ist zunächst das Materialverhalten aller Komponenten durch adäquate Materialmodelle für große Deformationen abzubilden. Für deren Entwicklung wird ein Konzept zur Materialmodellierung aufgegriffen und erweitert, das die Formulierung auf der Basis direkt verschalteter rheologischer Elemente ermöglicht. Nach entsprechenden Parameteridentifikationen werden die Materialmodelle im Rahmen von Finite-Elemente-Simulationen eines aus dem Hybridverbund gefertigten Demonstratorbauteils angewendet. Dabei ermöglicht das Vorgehen zur Modellerstellung die Berücksichtigung und Bewertung von Einflüssen der intrinsischen Fertigung auf das Bauteilverhalten. Hybrid parts, combining for example low weight with high strength, are based on the combination of different material classes. Despite an enormous potential for applications, hybrid composites are not well established for large series parts due to the expensive and complex production. To increase the number of applications, intrinsic, i.e. single-step, manufacturing processes are designed. Within this work, the development of an intrinsic hybrid composite for crash-relevant structural parts is supported by simulations. The considered hybrid composite is made up of a fibre-reinforced polymer, in which a metallic insert is integrated. The connection between these components is based on a combination of geometrical form fit and adhesive bonding. On one hand, adhesive bonds result from a coating of the metallic insert. On the other hand, local form fit elements are pressed into the fibre reinforced polymer during the global forming process. Consequently, the resulting parts, manufactured in just one step, show a complex inner structure, which make simulative analyses and dimensioning more difficult. Within the work at hand, the main research goal is the modelling and simulation of this intrinsic hybrid composite. To this end, the mechanical behaviour of all individual components has to be described by appropriate material models at large strains. For those developments, a concept of material modelling, which enables the formulation based on directly connected rheological elements, is adopted and extended. After identifying the according material parameters, these material models are applied within finite element simulations of a demonstrator made up of the hybrid composite. Thereby, the applied procedure for creating finite element models allows to consider and evaluate how the intrinsic manufacturing process affects the mechanical behaviour of the parts.
- Published
- 2019
165. Ein Beitrag zur Modellierung versetzungs- und verformungsinduzierter plastischer Lokalisierungsphänomene metallischer Werkstoffe
- Author
-
Silbermann, Christian B., Ihlemann, Jörn, Wagner, Martin F.-X., Baitsch, Matthias, and Technische Universität Chemnitz
- Subjects
Versetzungstheorie, Lokalisierung, Metallwerkstoffe ,ddc:621.3 ,Kontinuumsmechanik ,Viskoplastizität ,Lokalisation ,Finite-Elemente-Methode ,Finite-Differenzen-Methode ,Metallischer Werkstoff ,Kristall ,Mikrostruktur ,ddc:531 ,ddc:530 ,Continuum mechanics, dislocation theory, viscoplasticity, localization, finite element method, finite difference method, metallic materials, crystal, microstructure ,ddc:500 ,ddc:621 ,ddc:620 ,ddc:600 - Abstract
Die vorliegende Arbeit beschäftigt sich mit Festkörperkontinuumsmechanik und Metall- bzw. Kristallplastizität auf verschiedenen Längenskalen. Diesbezüglich besteht die Arbeit aus drei größeren Teilen. Im ersten Teil werden Verformungsvorgänge mit expliziter FEM (Finite-Elemente-Methode) und einem makroskopischen phänomenologischen Modell der Viskoplastizität simuliert. Hierbei wird sich auf das Gleichkanalwinkelpressen (ECAP) eines Metallbarrens und die Stauchung einer sogenannten Crashbox konzentriert. In beiden Fällen gelingt es, die im Experiment bereits beobachtete Lokalisierung der Verformung korrekt wiederzugeben. Da bei den Simulationen die konkrete Mikrostruktur des Materials vernachlässigt wird, werden diese Lokalisierungsphänomene als verformungsinduziert angesehen. Der zweite Teil beschäftigt sich mit der Erweiterung des viskoplastischen Modells, sodass mikroskopische Vorgänge der Gitterdefektstruktur des Materials berücksichtigt werden können. Dazu wird ein Modell des dynamischen Verhaltens von Versetzungspopulationen entwickelt und an das makroskopische viskoplastische Modell gekoppelt. Auf diese Weise können Aspekte der sogenannten Kornfeinung – einem komplexen Strukturbildungsprozess von Versetzungen und anderen Gitterdefekten – erfasst werden. Allerdings kann die für die makroskopischen Eigenschaften entscheidende Bildung von Subkorngrenzen auf diese Weise nicht abgebildet werden. Um dies zu erreichen, wird im dritten Teil der Arbeit eine mesoskopische Theorie der Kristallplastizität mit kontinuierlich verteilten Versetzungen verwendet und weiterentwickelt. Hierbei werden die für eine Subkornbildung wesentlichen Freiheitsgrade hinzugenommen, die Anzahl phänomenologischer Ansätze und zugehöriger Materialparameter aber so klein wie möglich gehalten. Mit dieser Kontinuumsversetzungstheorie (KVT) gelingt es, die Bildung von Subkorngrenzen bei großen plastischen Verformungen eines Kristallits zu verfolgen. Bei den impliziten FEM-Simulationen wird ebenfalls eine Lokalisierung beobachtet, allerdings in Bezug auf die Aktivität der Versetzungen in verschiedenen Gleitebenen. Dementsprechend wird dieses Lokalisierungsphänomen als versetzungsinduziert angesehen. Der Beitrag der vorliegenden Arbeit liegt zum einen in der Aufarbeitung und Gegenüberstellung unterschiedlicher methodischer Herangehensweisen zur Modellierung verformungs- und versetzungsinduzierter Lokalisierungsphänomene. Zum anderen wird eine Analyse und Vereinheitlichung der geometrisch linearen KVT nach Berdichevsky & Le vorgenommen. Wie sich dabei zeigt, verhindern inhärente kinematische Einschränkungen der Theorie die Simulation einer Subkornbildung. Aus diesem Grund wird die konsistente geometrisch nichtlineare KVT von Gurtin aufgegriffen und erweitert. Mit einem daraus abgeleiteten elastisch und plastisch anisotropen Modell der Einkristallviskoplastizität wird der Nachweis erbracht, dass die Subkornbildung damit simuliert werden kann. Darüber hinaus wird eine Aufbereitung und Synthese von Algorithmen zur numerischen Lösung der zugehörigen Feldgleichungen mittels der Methode der finiten Differenzen und der finiten Elemente geliefert. Zudem werden beide Näherungsverfahren in Bezug auf Vor- und Nachteile sowie thermodynamische Konsistenz bei der Anwendung auf Mehrfeldprobleme miteinander verglichen. The present thesis deals with solid continuum mechanics applied to metal and crystal plasticity on different length scales. In this respect, the work consists of three larger parts. In the first part, deformation processes are simulated with explicit FEM (Finite Element Method) and a macroscopic phenomenological model of viscoplasticity. Here the focus is on the Equal-Channel Angular Pressing (ECAP) of a metal billet and the compression of a so-called crash box. In both cases it is possible to correctly reproduce the localization of the deformation as already observed in the experiment. Since the concrete microstructure of the material is neglected in the simulations, these localization phenomena are regarded as deformation-induced. The second part deals with the extension of the viscoplastic model so that microscopic processes of the lattice defect structure of the material can be considered. A model of the dynamic behavior of dislocation populations is developed and coupled to the macroscopic viscoplastic model. In this way, aspects of the so-called grain refinement – a complex structure formation process of dislocations and other lattice defects – can be captured. However, the formation of subgrain boundaries, which is decisive for the macroscopic properties, cannot be predicted in this way. To achieve this, a mesoscopic theory of crystal plasticity with continuously distributed dislocations is used and further developed in the third part of the thesis. Here, the degrees of freedom essential for subgrain formation are added, while the number of phenomenological approaches and associated material parameters are kept as small as possible. With this continuum dislocation theory it is possible to follow the formation of subgrain boundaries during large plastic deformations of a crystallite. In the implicit FEM simulations, localization is also observed, but with respect to the dislocation activity in different slip planes. Accordingly, this localization phenomenon is considered dislocation-induced. The contribution of the present work lies on the one hand in the review and comparison of different methodical approaches to the modeling of deformation- and dislocation-induced localization phenomena. On the other hand, an analysis and unification of the geometrically linear continuum dislocation theory according to Berdichevsky & Le is carried out. As it turns out, inherent kinematic limitations of the theory prevent the simulation of subgrain formation. For this reason the consistent geometrically non-linear continuum dislocation theory from Gurtin is adopted and extended. With the derived model of elastically and plastically anisotropic single crystal viscoplasticity it is proven that subgrain formation can be simulated. Moreover, a preparation and synthesis of algorithms for the numerical solution of the associated field equations using the method of finite differences and finite elements is provided. In addition, both approximation methods are compared in terms of advantages and disadvantages as well as thermodynamic consistency when applied to multi-field problems.
- Published
- 2019
166. Multiscale Simulation of Semi-Crystalline Polymers to Predict Mechanical Properties.
- Author
-
Horn, Tobias Daniel, Heidrich, Dario, Wulf, Hans, Gehde, Michael, and Ihlemann, Jörn
- Subjects
- *
POLYMERS , *CRYSTALLINE polymers , *CELLULAR automata , *EVOLUTION equations , *COOLING - Abstract
A multiscale simulation method for the determination of mechanical properties of semi-crystalline polymers is presented. First, a four-phase model of crystallization of semi-crystalline polymers is introduced, which is based on the crystallization model of Strobl. From this, a simulation on the nanoscale is derived, which models the formation of lamellae and spherulites during the cooling of the polymer by using a cellular automaton. In the solidified state, mechanical properties are assigned to the formed phases and thus the mechanical behavior of the nanoscale is determined by a finite element (FE) simulation. At this scale, simulations can only be performed up to a simulation range of a few square micrometers. Therefore, the dependence of the mechanical properties on the degree of crystallization is determined by means of homogenization. At the microscale, the cooling of the polymer is simulated by a cellular automaton according to evolution equations. In combination with the mechanical properties determined by homogenization, the mechanical behavior of a macroscopic component can be predicted. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
167. Untersuchungen zum mechanischen Verhalten von Aluminium/Magnesium-Werkstoffverbunden und deren Grenzschicht bei der weiteren Umformung
- Author
-
Kirbach, Carola, Ihlemann, Jörn, Awiszus, Birgit, and Technische Universität Chemnitz
- Subjects
Aluminium ,Magnesium ,Grenzfläche ,Strangpressen ,Festigkeit ,Aluminium, Magnesium, Verbund, Strangpressen, Gesenkschmieden, Eigenspannungsanalyse, Grenzschichtfestigkeit, Fragmentierungskriterium, Rinnenstauchversuch, Grenzschichtkinematik ,ddc:621.3 ,ddc:620 - Abstract
Die vorliegende Arbeit befasst sich mit dem Grenzschichtverhalten von Aluminium-Magnesium-Werkstoffverbunden während der Weiterverarbeitung durch Warmumformverfahren. Die Herstellung der Verbunde erfolgt mittels hydrostatischem Strangpressen, was zu einer stoffschlüssigen Verbindung in Form von intermetallischen Phasen führt.Während der weiteren Umformung zerbricht diese Grenzschicht in Fragmente ohne die stoffschlüssige Verbindung zu den Grundwerkstoffen aufzugeben. Die Auswirkungen dieser Fragmentierung auf die Grenzschichtfestigkeit wird mittels verschiedener Biegeversuche untersucht. Eine Eigenspannungsanalyse basierend auf dem Bohrlochverfahren und einer speziellen numerischenAuswertemethode ist ebenfalls Bestandteil dieser Arbeit. Es folgt die Aufstellung eines Fragmentierungskriteriums, das die kritische Streckung für das Einsetzen der Grenzschichtfragmentierung anzeigt. Grundlage bildet eine Vielzahl von Rinnenstauchversuchen mit einer neu entwickelten Probenform. Die nach der Fragmentierung zu beobachtende Grenzschichtkinematik wird mittels numerischer Simulation nachempfunden und so Beanspruchungszustände auf mikroskopischer Ebene zugänglich gemacht.
- Published
- 2019
168. Homogenisierung und Modellierung des Materialverhaltens kurzfaserverstärkter Thermoplaste
- Author
-
Goldberg, Niels, Ihlemann, Jörn, Herzog, Roland, and Technische Universität Chemnitz
- Subjects
ddc:621.3 ,Materialmodellierung ,Anisotropie ,Polymere ,Faserverstärkung ,Finite-Elemente-Methode ,ddc:620 ,Materialmodellierung, große Deformationen, Phasenübergang, Anisotropie, Polymere, Faserverstärkung, Finite-Elemente-Methode, RVE-Homogenisierung - Abstract
Im Spritzguss hergestellte Bauteile mit Kurzfaserverstärkung weisen ein niedriges Gewicht bei hoher Steifigkeit auf und bieten damit beispielsweise in der Automobilbranche eine Alternative zu Bauteilen aus konventionellen Werkstoffen wie Stahl. Die Eigenschaften der Kunststoffbauteile sind das Resultat einer vielschichtigen Prozessgeschichte. Dabei erfährt das Material einen hohen Wärmeaustausch, wechselt seine Phase von flüssig zu fest, kühlt lokal unterschiedlich schnell ab und wird von den Orientierungen der eingebetteten Kurzfasern geprägt. Da die Bauteileigenschaften eine hohe Sensitivität gegenüber Variationen der Prozessparameter besitzen, sollen Simulationen des Fertigungsprozesses kostengünstige Vorhersagen zur Güte des Endproduktes ermöglichen. Den Simulationen liegen mathematische Gleichungen zu Grunde, die das effektive Materialverhalten beschreiben. Die vorliegende Arbeit beschäftigt sich mit der Formulierung eines solchen Materialmodells. Mit Hilfe von Homogenisierungen repräsentativer Volumenelemente wird zunächst der Einfluss der Faserorientierungsverteilung auf die mechanischen und thermischen Eigenschaften analysiert. Die daraus gewonnenen Erkenntnisse fließen anschließend in die Modellierung des Materialverhaltens ein. Der in dieser Arbeit verwendete Modellierungsrahmen ist für große Deformationen ausgelegt, berücksichtigt den Phasenübergang sowie Temperaturabhängigkeiten in den viskoelastischen Steifigkeitsanteilen und stützt sich auf eine effektive Integrationsregel, um die Faserorientierungsverteilung einzubeziehen. Die Identifikation der Materialparameter geschieht mit Hilfe von Experimenten an Proben mit unidirektionaler Faserausrichtung. Das identifizierte Materialmodell wird schließlich in die kommerzielle Finite-Elemente-Umgebung Abaqus implementiert und steht damit Simulationen der Abkühlung und der Beanspruchung eines spritzgegossenen Kettenglieds zur Verfügung.
- Published
- 2018
169. FEM-basierte Modellierung stark anisotroper Hybridcord-Elastomer-Verbunde
- Author
-
Donner, Hendrik, Ihlemann, Jörn, Kaliske, Michael, and Technische Universität Chemnitz
- Subjects
Plastizität ,Finite-Elemente-Methode ,Gummi ,Verstärkung ,Polyamid 66 ,Cord ,Kontinuumsmechanik ,Anisotrope Plastizität, Cord-Elastomer-Verbunde, Finite-Elemente-Methode, Große Deformationen, Hybridcorde, Repräsentative Volumenelemente, Schalenhomogenisierung ,ddc:621.3 ,Anisotropic plasticity, cord-rubber composites, finite element method, large deformations, hybrid cords, representative volume elements, shell-homogenization ,ddc:620 - Abstract
Zur Analyse der Beanspruchungen in textilverstärkten Elastomerbauteilen wie Luftfedern, Reifen, Riemen und Schläuchen sind Berechnungsmodelle mit einer feinen Balance zwischen Genauigkeit und Effizienz erforderlich. Die großen Deformationen, stark anisotropen Struktureigenschaften und kleinen Abmessungen der Festigkeitsträger gegenüber denen des Bauteils bedürfen einerseits einer detaillierten Modellierung, andererseits sind die kritischen Bereiche in diesen Bauteilen räumlich stark begrenzt, sodass eine Reduktion des Berechnungsaufwands erstrebenswert ist. Diese Modellreduktion führt zu Simulationen mit geringer Rechenzeit, die für eine praxistaugliche Optimierung von Hybridcord-Elastomer-Verbunden unerlässlich sind. Die beiden Hauptschwerpunkte der vorliegenden Arbeit bilden die kontinuumsmechanische Modellierung von Hybridcorden und die Erstellung repräsentativer Volumenelemente hochbeanspruchter Hybridcord-Elastomer-Verbunde. Aufbauend auf einem anisotropen Plastizitätsmodell zur Erfassung der Reibung in Multifilamentgarnen stellt ein Finite-Elemente-Modell zur Simulation der Verzwirnung von Hybridcorden das Fundament der Arbeit dar. Anhand experimenteller Ergebnisse aus Zug- und Torsionsversuchen sowie einem Vergleich mit Querschnittsaufnahmen wird gezeigt, dass das Modell die komplexen Eigenschaften eines Hybridcords abbilden kann. Die Grundlage der repräsentativen Volumenelemente stellt eine Erweiterung der klassischen periodischen Randbedingungen dar, die eine Berücksichtigung von Krümmungen und Drucklasten ermöglicht. Das Modell eignet sich daher, die Beanspruchungen in den hochbelasteten Bereichen textilverstärkter Elastomerbauteile wie der Rollfalte einer Luftfeder effizient zu analysieren. Mittels Parameterstudien werden abschließend Hybridcorde und Hybridcord-Elastomer-Verbunde untersucht und einige Hinweise für eine optimale Gestaltung hinsichtlich minimaler Beanspruchungen des Elastomers, des Hybridcords sowie der Grenzfläche gegeben.:Inhaltsverzeichnis Abkürzungs- und Symbolverzeichnis VIII 1 Einleitung 1 2 Grundlagen der Mathematik und der Mechanik 6 2.1 Tensoralgebra und -analysis 6 2.2 Nichtlineare Kontinuumsmechanik 11 2.3 Nichtlineare Finite-Elemente-Methode 16 3 Einordnung in den Stand der Forschung 22 4 Experimentelle Untersuchungen 26 4.1 Charakterisierung der Standardcorde 26 4.2 Charakterisierung der Hybridcorde 33 5 Materialmodelle für Multi lamentgarne 38 5.1 Anisotropes Plastizitätsmodell der Filamentreibung 38 5.2 Numerische Lösung der Materialgleichungen 43 5.3 Analytische Lösung für reibungsfreies Gleiten 48 5.4 Modellierung des thermischen Schrumpfens 50 6 FEM-basierte Modellierung von Hybridcorden 53 6.1 Simulation der Verzwirnung eines Standardcords 53 6.2 Erweiterung des Berechnungsmodells auf Hybridcorde 60 6.3 Analytisches Modell der Geometrie eines Hybridcords 65 6.4 Qualitative Charakterisierung des Hybridcordmodells 74 6.5 Parameteridenti kation und Validierung 83 6.6 Optimierungsbeispiele 92 7 Schalenartige RVEs für Cord-Elastomer-Verbunde 96 7.1 Geometrie der Axial- und der Kreuzlage 96 7.2 Erweiterte periodische Randbedingungen 98 7.3 E ektive Schaleneigenschaften 111 7.4 Berücksichtigung der Drucklast 118 7.5 Diskretisierung der RVEs 122 7.6 Submodelltechnik 128 7.7 Parameterstudien an Hybridcord-Elastomer-Verbunden 135 8 Zusammenfassung und Ausblick 146 Literaturverzeichnis 151 The analysis of stresses and strains within textile-reinforced rubber components like air springs, tyres, driving belts, and tubes requires accurate as well as efficient computational models. On the one hand, the large deformations, the composite's strongly anisotropic properties, and the large ratio between the size of the cords and the composite necessitate a precise modeling. On the other hand, the highly loaded parts of the components are spatially confined and thus a reduction of the computational effort is desirable. These reduced models are efficient enough for performing engineering-oriented optimizations. The two main priorities of this work are the continuum mechanical modeling of hybrid cords and the development of representative volume elements of highly loaded hybrid cord-rubber composites. Based on an anisotropic plasticity model, which takes the frictional sliding between the filaments within multifilament yarns into account, a finite element model for the simulation of the twisting process of a hybrid cord is the fundament of this work. A comparison with experimental results from tensile and torsional tests as well as images of cross sections validate the proposed hybrid cord model. The basis of the representative volume element is the extension of the classical periodic boundary conditions, which now enable to take the curvature and pressure load into account. Thus, the model is suitable to analyze the highly loaded parts of hybrid cord-rubber composites like the rolling lobe of an air spring. Finally, the set-ups of hybrid cords and hybrid cord-rubber composites are analyzed by means of parameter studies to obtain a minimized loading of the rubber, yarns, and their interface.:Inhaltsverzeichnis Abkürzungs- und Symbolverzeichnis VIII 1 Einleitung 1 2 Grundlagen der Mathematik und der Mechanik 6 2.1 Tensoralgebra und -analysis 6 2.2 Nichtlineare Kontinuumsmechanik 11 2.3 Nichtlineare Finite-Elemente-Methode 16 3 Einordnung in den Stand der Forschung 22 4 Experimentelle Untersuchungen 26 4.1 Charakterisierung der Standardcorde 26 4.2 Charakterisierung der Hybridcorde 33 5 Materialmodelle für Multi lamentgarne 38 5.1 Anisotropes Plastizitätsmodell der Filamentreibung 38 5.2 Numerische Lösung der Materialgleichungen 43 5.3 Analytische Lösung für reibungsfreies Gleiten 48 5.4 Modellierung des thermischen Schrumpfens 50 6 FEM-basierte Modellierung von Hybridcorden 53 6.1 Simulation der Verzwirnung eines Standardcords 53 6.2 Erweiterung des Berechnungsmodells auf Hybridcorde 60 6.3 Analytisches Modell der Geometrie eines Hybridcords 65 6.4 Qualitative Charakterisierung des Hybridcordmodells 74 6.5 Parameteridenti kation und Validierung 83 6.6 Optimierungsbeispiele 92 7 Schalenartige RVEs für Cord-Elastomer-Verbunde 96 7.1 Geometrie der Axial- und der Kreuzlage 96 7.2 Erweiterte periodische Randbedingungen 98 7.3 E ektive Schaleneigenschaften 111 7.4 Berücksichtigung der Drucklast 118 7.5 Diskretisierung der RVEs 122 7.6 Submodelltechnik 128 7.7 Parameterstudien an Hybridcord-Elastomer-Verbunden 135 8 Zusammenfassung und Ausblick 146 Literaturverzeichnis 151
- Published
- 2017
170. Chemisch-mechanisch gekoppelte Modellierung und Simulation oxidativer Alterungsvorgänge in Gummibauteilen
- Author
-
Naumann, Christoph, Ihlemann, Jörn, Lion, Alexander, and Technische Universität Chemnitz
- Subjects
rubber, oxidation, ageing, DLO effect, relaxation, stiffening, permanent set, staggered solution algorithm, Mullins-effect ,Gummi ,Oxidation ,Alterung ,Diffusion ,Relaxation ,ddc:621 ,Gummi, Oxidation, Alterung, DLO-Effekt, Relaxation, Versteifung, bleibende Deformation, gestaffelter Lösungsalgorithmus, Mullins-Effekt - Abstract
Aufgrund der großen Bedeutung technischer Gummiwerkstoffe in industriellen Anwendungen ist die Vorhersage des Materialverhaltens ein aktuelles Forschungsgebiet. Insbesondere die Veränderung der Eigenschaften, die durch chemische Prozesse herbeigeführt werden, spielen eine große Rolle, da aufgrund gestiegener Anforderungen an die Haltbarkeit von Bauteilen diese Alterungseffekte verstanden, vorhergesagt und abgeschwächt werden müssen. Im Rahmen dieser Arbeit wird ein mathematisches Modell hergeleitet, das die chemischen Vorgänge vorhersagt und deren Auswirkungen auf wichtige Eigenschaften in einem mechanischen Materialmodell beachtet. Insbesondere der Oxidation durch Luftsauerstoff wird Rechnung getragen. Das mechanische Materialverhalten alternder Gummiwerkstoffe wird mit Hilfe eines neuartigen Ansatzes modelliert. Das in dieser Arbeit vorgestellte Dynamische-Netzwerk-Modell betrachtet die Auswirkungen der chemischen Reaktionen auf das mechanische Verhalten als einen kontinuierlichen Netzwerkumbau durch das Entfernen und neue Einsetzen von Verbindungen zwischen Polymerketten. Basierend auf experimentellen Erkenntnissen werden Hypothesen formuliert, die eine Kopplung zwischen den Oxidationsreaktionen und der Veränderung des mechanischen Verhaltens herstellen. Durch Beachtung von Diffusion und Reaktion kann die lokale Sauerstoffverteilung in großvolumigen Bauteilen berechnet und der Effekt der diffusionslimitierten Oxidation (DLO-Effekt) vorhergesagt werden. Um eine Bestimmung der Modellparameter zu ermöglichen, werden verschiedene Experimente vorgeschlagen, mathematisch modelliert und deren Eignung zur Parameteridentifikation analysiert. Mit einer vergleichsweise geringen Anzahl von Experimenten können sowohl die chemischen als auch die mechanischen Modellparameter sicher identifiziert werden. In dieser Arbeit wird zudem ein sogenannter gestaffelter Lösungsalgorithmus vorgeschlagen, der das Alterungsproblem nach einer mathematischen Entkopplung unterschiedlicher Feldprobleme über geeignete Kopplungsvariablen effizient berechnen kann. Mit Hilfe dieses Algorithmus kann eine Simulation effizient durchgeführt und das Alterungsverhalten komplexer Strukturen vorhergesagt werden. Die Simulation anwendungsnaher Strukturen zeigt, dass die abgeleiteten Modelle und Algorithmen problemlos in einem industriellen Umfeld einsetzbar sind. Due to the great importance of rubber materials in industrial applications, the prediction of the material behavior is a current research field. Particularly the property changes that are induced by chemical processes play a major role, as these aging effects must be understood, predicted and reduced due to the increased requirements regarding the durability of components. In the context of this thesis, a mathematical model that predicts and considers the chemical processes and their effects on important properties in a mechanical material model is derived. Oxidation through atmospheric oxygen is specifically examined in this work. The mechanical material behavior of aging rubber materials is modeled using a novel approach. The dynamic network model introduced in this paper considers the effects of the chemical reactions on the mechanical behavior as a continuous restructuring of the network by removing and inserting new crosslinks between polymer chains. Based on experimental obervations a coupling between the oxidation reactions and a change of the mechanical material behavior is proposed. By taking into account the diffusion and reaction the local distribution of oxygen in large sized components can be computed. Thus, the effect of diffusion limited oxidation (DLO effect) can be predicted. In order to make an identification of the model parameters possible, different experiments are suggested, modeled mathematically and their suitability for parameter identification is analyzed. Not only the chemical, but also the mechanical model parameters can be identified reliably using a comparably few number of experiments. Moreover, a so-called staggered solution algorithm that can calculate the aging problem efficiently after a mathematical uncoupling of the field problems using a suitable coupling variable is introduced. This algorithm can perform a simulation efficiently and predict the aging behavior of complex structures. The simulation of application oriented structures proofs the applicability of the derived models and algorithms within an industrial environment.
- Published
- 2016
171. Modellierung und Simulation von Selbstorganisationsprozessen in belasteten technischen Gummiwerkstoffen
- Author
-
Wulf, Hans, Ihlemann, Jörn, Herzog, Roland, and Technische Universität Chemnitz
- Subjects
ddc:621.3 ,Modellierung ,Simulation ,Selbstorganisation ,Gummi ,ddc:620 ,Gummiwerkstoff ,modelling, rubber, selforganization - Abstract
Gummiwerkstoffe zeigen unter Belastung ein hochkomplexes Verhalten. Besonders markant sind dabei die von der Belastungsgeschichte und Belastungsrichtung abhängigen Entfestigungseffekte. Für die Entwicklung zuverlässiger und optimierter Produkte aus Gummi ist ein vertieftes Verständnis dieser Eigenschaften essentiell. Sie lassen sich aber nur schwer mit den Eigenschaften der bei der Herstellung des Werkstoffs verwendeten Grundkomponenten in Zusammenhang bringen. Die genauen Vorgänge auf molekularer Ebene, die zu dem typischen Materialverhalten führen, sind unbekannt. In der Arbeit wird als Erklärungsansatz die von Ihlemann entwickelte Theorie selbstorganisierender Bindungsmuster untersucht. Die zentrale These der Theorie besagt, dass sich unter Deformation infolge eines Selbstorganisationsprozesses eine inhomogene Verteilung schwacher physikalischer Bindungen im Material einstellt. Dieses Bindungsmuster verändert sich mit dem Deformationsvorgang und stellt damit das Gedächtnis des Materials dar. In der Arbeit werden zunächst allgemeine Aspekte selbstorganisierender Systeme untersucht und die Theorie anschließend unter diesen Aspekten analysiert. Außerdem wird der Erklärungsansatz geeignet erweitert und demonstriert, dass sich auch neue messtechnische Befunde damit problemlos erklären lassen. Insgesamt wird gezeigt, dass die Theorie selbstorganisierender Bindungsmuster als überzeugende Begründung für eine Vielzahl beobachteter Eigenschaften von Gummiwerkstoff geeignet ist. Um die Theorie zu testen, wurde ein Simulationsprogramm erstellt. Es verwendet eine starke Abstraktion der Molekularstruktur von gefülltem Gummiwerkstoff. Die einzelnen Modellelemente wurden dabei so einfach wie möglich gehalten. Sie sind alle elastisch, es existiert aber eine Regel zum dynamischen Einfügen und Entfernen der physikalischen Bindungen. Daher können alle inelastischen Eigenschaften des Modells direkt mit einer Veränderung der Bindungsstruktur assoziiert werden. Es werden Verfahren vorgestellt, mit denen die zeitliche und deformationsabhängige Evolution des Modellzustands verfolgt werden kann. Damit werden die Abläufe von Messungen nachgebildet. Die Resultate der Simulation werden mit den Messergebnissen verglichen. Dabei zeigt sich, dass mit dem Programm eine Vielzahl typischer inelastischer Eigenschaften von gefülltem Gummiwerkstoff reproduziert werden kann. Dieses Resultat ist bemerkenswert, weil keines der Grundelemente des Modells diese Eigenschaften aufweist. Eine Analyse des Modells zeigt eindeutig, dass das Modellverhalten auf einem Selbstorganisationsvorgang des Modellelements, welches die physikalischen Bindungen repräsentiert, basiert. Der Selbstorganisationsvorgang verläuft genau so, wie von der Theorie vorhergesagt. Die erstaunliche Ähnlichkeit zum Materialverhalten und die geringe Anzahl von getroffenen Annahmen ist ein starkes Indiz dafür, dass in Gummiwerkstoff ebenfalls ein solcher Selbstorganisationsprozess abläuft und das Materialverhalten maßgeblich beeinflusst. Filled rubber material exhibits a complex behavior in mechanical testing. Especially characteristic is a softening of the material depending on direction and history of loading. For the development of reliable and optimized products deep knowledge about these properties is essential. They are, however, difficult to connect to the properties of the employed molecular components. Overall, the precise molecular scale processes which lead to the material behavior are unknown. In this work the theory of self-organizing linkage patterns by Ihlemann is investigated. Its central claim is, that under deformation a self-organization process occurs, which leads to an inhomogeneous distribution of weak physical links. This linkage pattern evolves during deformation and therefore represents the memory of the material. First of all, some general properties of self-organizing systems are considered. Thereafter, this theory is analysed under these aspects. Moreover, the approach is extended in order to explain some recent experimental observations. It is demonstrated that these new results clearly support the concept. Overall, it is shown that the theory of self-organizing linkage patterns is capable of explaining how a wide variety of material properties emerges from the microstructure. In order to test the theory, a simulation program is developed. It is based on an abstract model of the molecular structure of filled rubber. The model elements are kept as simple as possible. Their characteristic is always elastic. However, there is a rule for dynamically inserting and removing the model element representing the physical links. Hence, all inelastic properties of the model can be associated with a modification of the linkage structure. Algorithms for tracking the evolution of the linkage pattern over time and during a deformation process are presented. These allow to replicate the schedule of published experiments in simulation. The simulation can reproduce a wide variety of typical rubber properties. This is a remarkable result, as none of the basic model elements show any inelastic behavior. An analysis of the model shows clearly that the model behavior is due to a self-organization process based on the model element representing the physical linkages. The self-organization is structured exactly as predicted by the theory. The surprising similarity between simulation and experimental results and the small number of asumptions made lead to the conclusion that in filled rubber most probably such a self-organization process with decisive impact on the material properties is occuring.
- Published
- 2016
172. Lebensdauervorhersage mehrachsig belasteter Elastomerbauteile unter besonderer Berücksichtigung rotierender Beanspruchungsrichtungen
- Author
-
Klauke, Rainer, Ihlemann, Jörn, Kröger, Matthias, and Technische Universität Chemnitz
- Subjects
ddc:621.3 ,Einfache Scherung, Schadenshypothese, Ermüdung, Lebensdauer, Rotierende Achsen, Rührversuch, Tensorbasiertes Schadensmaß ,ddc:620 ,Lebensdauer ,Simple Shear, Damage, Fatigue, Durability, Rotating Axes - Abstract
Die für die Untersuchung des Ermüdungswiderstandes von Elastomerbauteilen verwendeten Formulierungen basieren häufig auf Modellen, die für Anwendungen in der Metalltechnik entwickelt wurden. Die damit verbundenen Eigenschaften wie Isotropie oder Elastizität stehen hingegen im Konflikt mit den Anforderungen, die zu der Wahl eines gefüllten Polymers als Werkstoff geführt haben. Gleichzeitig weisen technische Gummiwerkstoffe ein hochgradig nichtlineares Materialverhalten auf und zeigen vom Polymer und Füllstoffgrad abhängig eine unterschiedlich ausgeprägte belastungsinduzierte Anisotropie. Diese Umstände führen zu dem Bedarf, das Ermüdungsverhalten technischer Gummiwerkstoffe in Abhängigkeit der für Gummi typischen Eigenschaften intensiver zu untersuchen und neue Ansätze für die Auslegung der Lebensdauer von elastomeren Werkstoffen bereitzustellen. Im Rahmen der Arbeit wird eine Auswahl an unterschiedlichen Modellwerkstoffen auf polymerer Basis auf ihre Lebensdauereigenschaften hin analysiert. Den Schwerpunkt bilden hierbei modulierte Belastungsrichtungen, die über eine einfache Scherung mit rotierenden Achsen versuchstechnisch abgebildet werden. Anhand der Versuchsergebnisse werden neue Ansätze zur Vorhersage der Lebensdauer technischer Gummiwerkstoffe formuliert und mit bisherigen Ansätzen verglichen. Neben der Formulierung neuer Berechnungsvorschriften zur Bestimmung des Ermüdungswiderstandes polymerer Werkstoffe werden zudem die einfache Scherung mit rotierenden Achsen sowie das Versuchsprinzip zu deren Umsetzung eingehend untersucht. Dies umfasst auch eine Analyse einer mechanischen Charakterisierung technischer Gummiwerkstoffe anhand einer einfachen Scherung mit rotierenden Achsen.
- Published
- 2015
173. Modellierung und Simulation der Aushärtung polymerer Werkstoffe
- Author
-
Landgraf, Ralf, Ihlemann, Jörn, Lion, Alexander, and Technische Universität Chemnitz
- Subjects
Materialmodellierung, große Deformationen, Aushärtung, Polymere, Finite-Elemente-Methode, Acrylische Knochenzemente, Vertebroplastie ,ddc:621.3 ,Kontinuumsmechanik ,Finite-Elemente-Methode ,Polymere ,Aushärtung ,Knochenzement ,ddc:610 ,ddc:620 ,material modelling, large deformations, polymer curing, finite element method, acrylic bone cement, vertebroplasty ,ddc:600 - Abstract
Die vorliegende Arbeit befasst sich mit der kontinuumsmechanischen Formulierung des Aushärteverhaltens polymerer Werkstoffe sowie der Implementierung und Simulation von Aushärtestoffgesetzen im Rahmen der Finite-Elemente-Methode. Auf Basis eines allgemeinen Modellierungsrahmens wird ein konkretisiertes Stoffgesetz für die Nachbildung von Aushärteprozessen eines acrylischen Knochenzements entwickelt. Darüber hinaus werden verschiedene Finite-Elemente-Simulationen zum klinischen Verfahren der Vertebroplastie präsentiert. This work deals with the continuum mechanical formulation of curing phenomena in polymers as well as the implementation and simulation of curing models within the finite element method. Based on a general modelling framework, a specified material model for the simulation of curing processes in an acrylic bone cement is developed. Moreover, different finite element simulations regarding the clinical procedure of vertebroplasty are presented.
- Published
- 2015
174. Identifikation und Optimierung im Kontext technischer Anwendungen
- Author
-
Schellenberg, Dirk, Ihlemann, Jörn, Herzog, Roland, and Technische Universität Chemnitz
- Subjects
ddc:621.3 ,Parameteridentifikation ,Materialcharakterisierung ,Gestaltoptimierung ,Finite-Elemente-Methode ,Gummi ,Numerische Integration ,Stoffgesetzanpassung, Parameteridentifikation, Formoptimierung, Formidentifikation, Gummiwerkstoffe, Nichtlineare FEM, Materialcharakterisierung, Numerische Integration ,ddc:620 ,Parameter identification, shape optimization, shape identification, rubber materials, finite element method, material characterization, numerical integration - Abstract
Es wurde die Optimierungssoftware SPC-Opt entwickelt, mit welcher sich Aufgaben aus den Bereichen der Formoptimierung sowie der Material- und Formidentifikation bearbeiten lassen. Zur Lösung von Identifikationsproblemen steht eine robuste Implementierung des Levenberg-Marquardt-Fletcher-Verfahrens zur Verfügung. Ergänzt wird dieses durch Line-Search- und Trust-Region-Verfahren, welche sich besonders für Aufgaben der Formoptimierung eignen. Es wurden effiziente Algorithmen zur Approximation der Hesse-Matrix sowie verschiedene Verfahren zur Startparametervariation integriert. Das Programm verfügt über Schnittstellen zur Nutzung von ABAQUS, ANSYS, MSC.MARC, eigenen FEM-Programmen sowie LUA-Skripten. Für Formoptimierungen können geometrische Konturen durch NURBS approximiert und deren Kontrollpunkte als Formparameter genutzt werden. Die Aktualisierung der FEM-Netze entsprechend der Formparameteränderung erfolgt durch ein analytisches Verfahren. Der zweite Schwerpunkt der Arbeit bezieht sich auf die Weiterentwicklung bestehender Verfahren zur Materialparameteridentifikation im Bereich der Gummiwerkstoffe. Hierbei wurde das Konzept der Anpassung anhand bauteilnaher Probekörper entwickelt. Dabei wurde am Beispiel einer Fahrwerksbuchse ein Probekörper entworfen, welcher dem originalen Bauteil zwar ähnlich sieht, jedoch eine deutlich einfachere Geometrie hat. Durch diesen konnte das Verhalten des Bauteils gut approximiert und sichergestellt werden, dass die im Rahmen der Parameteridentifikation durchgeführten FEM-Simulationen sicher konvergieren. Zudem wurden die Nutzerschnittstellen des inelastischen Morph-Stoffgesetz für MSC.MARC und ABAQUS weiterentwickelt, sodass diese nunmehr auch im industriellen Umfeld nutzbar sind. Es konnte nachgewiesen werden, dass die Verwendung bauteilnah identifizierter Parameter zu einer erheblich besseren Abbildung des Materialverhaltens führt als die Verwendung anhand von Standardprobekörpern identifizierter Parameter. Weiterhin zeigte sich, dass vor allem der Einsatz eines Stoffgesetzes mit der Möglichkeit zur Abbildung des charakteristischen Verhaltens von Elastomeren unbedingt erforderlich ist. Within the scope of this work the optimization software SPC-Opt has been developed to successfully process tasks in the fields of shape optimization and parameter identification. The software includes a robust Levenberg-Marquardt-Fletcher algorithm, several line search and trust region algorithms as well as efficient methods for the approximation of the Hessian matrix. Additionally, procedures for the variation of initial parameters (Design Of Experiments) were implemented. The software includes interfaces to ABAQUS, ANSYS, MSC.MARC, in-house FEM programs and LUA scripts. Within shape optimization problems, geometric shapes are approximated by NURBS and the related control points are employed as design variables. For the update of the FE mesh during the variation of the design variables, a special analytical algorithm is used to preserve the mesh topology. Another focus is related to the further development of existing material parameter identification procedures for rubber materials. Therefor, the concept of component-oriented specimens was developed. Using the example of a bushing, a specimen was designed, which is similar to the original component but has a much simpler geometry. According to this, the behavior of the original component is approximated and the stability of necessary FE simulations is ensured. Additionally, the utilized Model of Rubber Phenomenology (MORPH) is improved in view of the industrial use. It is shown that the identification of material parameters using component-oriented specimens leads to a much better approximation of the original component behaviour than using standard specimens. Additionally, it is shown that the use of a material law which can consider characteritic properties of elastomers, is absolutely necessary.
- Published
- 2015
175. Numerische Simulation des viskoplastischen Verhaltens metallischer Werkstoffe bei endlichen Deformationen
- Author
-
Shutov, Alexey, Ihlemann, Jörn, Altenbach, Holm, Lion, Alexander, and Technische Universität Chemnitz
- Subjects
Viskoplastizität ,Bauschinger-Effekt ,Numerische Integration ,Finite-Elemente-Methode ,Viscoplasticity, Metal Plasticity, Finite Strains, Bauschinger Effect, Kinematic Hardening, Distortional Hardening, Numerical Integration, Finite Element Method ,ddc:518 ,ddc:621.3 ,ddc:531 ,Metallplastizität, Endliche Deformationen, Kinematische Verfestigung, Formative Verfestigung ,ddc:620 - Abstract
In den letzten Jahrzehnten hat sich auf dem Gebiet der phänomenologischen Metallplastizität eine schleichende Revolution vollzogen. Dank der gestiegenen Rechenleistung, in Kombination mit ausgereiften numerischen Algorithmen, sind viele technisch relevante Problemstellungen einer zuverlässigen numerischen Analyse zugänglich gemacht worden. Beispielsweise ermöglicht die Metallumformsimulation, als häufigste Anwendung der Plastizitätstheorie, eine Analyse des Eigenspannungszustandes und der Rückfederung in plastisch umgeformten Halbzeugen und Bauteilen. Solche Simulationen sind für die Planung energie- und ressourceneffizienter Herstellungsprozesse sowie für die Ausnutzung der plastischen Tragfähigkeitsreserven von großer Bedeutung. Die Crashtest-Simulation ist die zweithäufigste Anwendung, die in der Automobilindustrie und auch zunehmend im Flugzeugbau eingesetzt wird. Aus der Notwendigkeit, das Verhalten metallischer Werkstoffe auf Bauteilebene hinreichend genau zu beschreiben, resultiert die Motivation für eine breit angelegte Studie zur Materialmodellierung. Dabei führt die beträchtliche Anzahl unterschiedlicher Phänomene und Effekte, die berücksichtigt werden müssen, zu einer großen Vielfalt von Materialmodellen. Da die Lösung komplizierter praktischer Probleme mit einem sehr großen numerischen Aufwand verbunden ist, wird der vorteilhafte phänomenologische Zugang bevorzugt. Bei der Konzeption von neuen phänomenologischen Materialmodellen müssen folgende Aspekte beachtet werden: die Genauigkeit bei der Beschreibung des Materialverhaltens; die Stabilität und Robustheit von zugehörigen numerischen Algorithmen; die numerische Effizienz; die zuverlässige Parameteridentifikation für einen möglichst großen Anwendbarkeitsbereich; die Anschaulichkeit und Einfachheit des Materialmodells. Im Allgemeinen stehen diese Anforderungen an ein "gutes Materialmodell" zwar in einem gewissen Widerspruch zueinander, bilden andererseits aber das Grundgerüst für eine systematische Studie. Obwohl sich die vorliegende Arbeit vordergründig an erfahrene Spezialisten im Bereich der Kontinuumsmechanik wendet, sind die darin präsentierten Modelle und Algorithmen auch für praktisch tätige Berechnungsingenieure von Interesse. In the last decades, a creeping revolution was taking place in the area of the phenomenological metal plasticity. Due to the increased computational power, combined with refined numerical algorithms, many of technically relevant problems are now available for the numerical analysis. In particular, the metal forming simulation is a typical application of the metal plasticity. It enables the analysis of the residual stresses and spring back phenomena in plastically deformed workpieces and components. Such analysis is advantageous for planning of energy and resource-efficient manufacturing and for exploitation of plastic reserves of bearing capacity. The crash test simulation is the second most common application of metal plasticity, highly celebrated in the automotive industry and gaining increasing popularity in the aircraft industry. The need for sufficiently accurate description of metal behaviour on the macroscale motivates wide-ranging studies on material modelling. The large number of different effects and phenomena contributes to the large manifold of material models. The current work deals with the phenomenological approach, due to its great suitability for the solution of practical problems. The following aspects should be taken into account upon the construction of new phenomenological models: the accurate description of the material behaviour, the stability and robustness of the corresponding numerical algorithms, the numerical efficiency, the reliable parameter identification for a sufficiently large application area, the clearness and simplicity of the material models. In general, these requirements imposed on a "good material model" contradict each other. In this work, however, they are complimentary to each other and build a framework for a systematic study. Although this work is written primarily for experts on the continuum mechanics, the presented models and algorithms can be of interest for practically working engineers.
- Published
- 2013
176. Bewertung von Verfahren zur Fließspannungsbestimmung in der Nanoindentation
- Author
-
Clausner, André, Richter, Frank, Ihlemann, Jörn, and Technische Universität Chemnitz
- Subjects
Indentation size effect ,ddc:531 ,ddc:530 ,Härte ,Fließgrenze ,Finite-Elemente-Methode ,Nanoindentation, Härtemessung, Fließspannung, effektiv geformter Indenter, erweiterter Hertzscher Ansatz, Expanding cavity-Modell, Loading partial unloading-Verfahren - Abstract
Die Nanoindentation ist ein inzwischen etabliertes Verfahren zur Bestimmung der Materialkennwerte Härte und Elastizitätsmodul in kleinen Größendimensionen. Eine zusätzliche Bestimmung der Fließspannung aus solchen Nanoindentationsexperimenten würde deren Einsatzmöglichkeiten deutlich erweitern und zum Beispiel für die Bauteilauslegung kleiner Strukturen, Schichtcharakterisierung und die Beschaffung von Simulationseingangsdaten einen großen Fortschritt bedeuten. Diese Gründe machen das Thema zu einem aktuellen Forschungsgegenstand. In der vorliegenden Arbeit steht deswegen die Bewertung von Fließspannungsbestimmungsverfahren für Massivmaterialien in der Nanoindentation mittels einer Kombination aus Finite-Elemente-Simulationen und umfangreichen Experimentaldaten im Zentrum. Im Speziellen wird dabei das Konzept des effektiv geformten Indenters mit dem erweiterten Hertzschen Ansatz und dessen Anwendung zur Fließspannungsbestimmung aus Eindringversuchen mit selbstähnlichen Berkovichpyramiden betrachtet. Zur Bearbeitung dieser Aufgabenstellung wurden unter anderem drei Referenzverfahren zur Fließspannungsbestimmung (die Expanding cavity-Modelle, das Loading partial unloading-Verfahren und Minidruckversuche) ausführlich charakterisiert. Damit konnten dann im Weiteren belastbare Referenzfließspannungen für die umfangreiche Experimentaldatenbasis zur Verfügung gestellt werden. Außerdem wurden die untersuchten Materialien auf den Einfluss der Größenabhängigkeit der Fließspannungen, den Indentation size effect, hin untersucht. Dabei wurden die vorliegenden physikalischen Vorgänge in den Proben beschrieben, dahingehende Unterschiede bei den betrachteten Referenzverfahren charakterisiert und den Fließspannungswerten die Fließzonendimensionen zugeordnet. Mit den damit zur Verfügung stehenden Informationen konnte das Konzept des effektiv geformten Indenters in seiner Anwendung zur Fließspannungsbestimmung grundlegend bewertet werden. Alle Untersuchungen wurden dabei stets parallel mit Hilfe von Simulations- und Experimentaldaten durchgeführt, um tiefere Einblicke in die zu Grunde liegende Mechanik der Fließprozesse zu gewinnen.
- Published
- 2013
177. Verallgemeinerung eindimensionaler Materialmodelle für die Finite-Elemente-Methode
- Author
-
Freund, Michael, Ihlemann, Jörn, Lion, Alexander, and Technische Universität Chemnitz
- Subjects
ddc:621.3 ,Eindimensionale Stoffgesetze, Verallgemeinerung, Finite-Elemente-Methode, Repräsentative Raumrichtungen, Gummiwerkstoffe, Viskoplastizität, Fließflächen, Numerische Integration ,ddc:620 ,One-dimensional material models, generalization, finite element method, representative directions, rubber materials, viscoplasticity, yield surfaces, numerical integration ,Stoffgesetz ,Verallgemeinerung ,Finite-Elemente-Methode ,Gummi ,Viskoplastizität ,Fließfläche ,Numerische Integration - Abstract
Für die Simulation technischer Bauteile mit Hilfe der Finite-Elemente-Methode (FEM) werden tensorielle Stoffgesetze benötigt, die zu einem beliebigen dreidimensionalen Verzerrungszustand und gegebenenfalls der Belastungsvorgeschichte und -geschwindigkeit des Materials die zugehörige Spannungsantwort liefern. Die Entwicklung derart komplexer Materialmodelle verläuft oftmals über Zwischenstufen, die zunächst nur Vorhersagen für den einachsigen Zug-/Druckversuch erlauben. Zur automatischen Verallgemeinerung solcher eindimensionaler Materialbeschreibungen zu vollständig dreidimensionalen Stoffgesetzen für die Finite-Elemente-Methode wird im Rahmen dieser Arbeit das Konzept repräsentativer Raumrichtungen vorgeschlagen, welches auf der Integration einachsiger Spannungszustände über eine diskrete Anzahl gleichmäßig verteilter (repräsentativer) Raumrichtungen basiert. Zur Untersuchung der grundlegenden Eigenschaften des Algorithmus wurden verschiedene inelastische tensorielle Beispielstoffgesetze herangezogen, deren eindimensionale Formulierung als Eingangsmodell für die repräsentativen Raumrichtungen dient. Hierbei zeigt sich, dass die wesentlichen Materialeigenschaften des jeweiligen uniaxialen Eingangsmodells bei der Verallgemeinerung vollständig erhalten bleiben. Weiterhin werden einige wichtige Effekte vom Konzept automatisch generiert, wie z. B. die anisotrope Entfestigung technischer Gummiwerkstoffe oder die formative Verfestigung metallischer Werkstoffe, was eine realitätsnahe Simulation dieser Materialklassen ohne zusätzlichen Arbeitsaufwand erlaubt. Das Konzept wurde zusätzlich auf Stoffgesetze angewendet, die ausschließlich in Form einer eindimensionalen Materialbeschreibung vorliegen und somit konkrete Anwendungsfällle darstellen. Darüber hinaus wurden für einige ausgewählte Stoffgesetze in repräsentativen Raumrichtungen Vergleiche mit Ergebnissen aus experimentellen Versuchen vorgenommen, wobei sich stets eine gute Übereinstimmung zwischen Experiment und Simulation ergibt. Das Konzept repräsentativer Raumrichtungen wurde in die zwei kommerziellen Finite-Elemente-Programme MSC.Marc und ABAQUS implementiert. Hiermit können Simulationen inhomogener Verzerrungs- und Spannungsverteilungen durchgeführt werden, obwohl das zugrunde liegende Stoffgesetz lediglich einachsige Spannungszustände beschreibt. In diesem Zusammenhang werden verschiedene Methoden vorgestellt, mit deren Hilfe die Effizienz einer FEM-Simulation erheblich gesteigert werden kann. Dies betrifft zum einen die Generierung einer gleichmäßigen Verteilung von repräsentativen Raumrichtungen mit Hilfe eines numerischen Algorithmus zur Simulation sich abstoßender elektrischer Punktladungen auf der Kugeloberfläche. Zum anderen besteht die Möglichkeit, die einzelnen Sätze von repräsentativen Raumrichungen in den Gaußpunkten eines finiten Elementes unterschiedlich zueinander auszurichten, was bei gleichbleibendem Rechenaufwand eine beträchtliche Erhöhung der Rechengenauigkeit erlaubt. The simulation of technical components using the finite element method (FEM) requires tensorial constitutive models which describe the complete relation between a given three-dimensional state of strain (in some cases also the loading history and strain rate) and the corresponding state of stress. The development of such complex material models often leads to an intermediate stage that enables the prediction of uniaxial tension and compression only. The automatic generalization of those one-dimensional material descriptions to complete three-dimensional constitutive models for the finite element method can be accomplished by using the concept of representative directions which is based on the integration of uniaxial stresses over a discrete number of uniformly distributed (representative) directions in space. In order to investigate the fundamental characteristics of the algorithm several inelastic tensorial constitutive models were used, whose one-dimensional formulation serves as the input model for the use within the representative directions. In this context it becomes evident that the essential material properties of the respective uniaxial input model are completely preserved during the process of generalization. Furthermore, some important effects are produced automatically by the concept such as the anisotropic stress softening of technical rubber materials or the distortional hardening of metallic materials, which enables a realistic simulation of those material classes without spending additional effort. The concept was also applied to material models that are available in form of a one-dimensional material description only, so that these can be regarded as concrete applications. In addition, some of the material models in representative directions were compared to experimental data, whereas a good agreement between measurement and simulation can be noticed. The concept of representative directions has been implemented into the commercial finite element programs MSC.Marc and ABAQUS. This enables simulations of inhomogeneous strain and stress distributions even though the underlying material model describes uniaxial loading processes only. In this context, several methods are introduced which can be applied to increase the efficiency of a finite element simulation to a great extent. On the one hand this affects the generation of a uniform distribution of representative directions using a numerical algorithm simulating the repulsion of electric charges on the surface of a sphere. On the other hand, it is possible to adjust the sets of representative directions at the integration points of a finite element differently, which leads to an increasing computational accuracy at constant computational effort.
- Published
- 2012
178. Experimentell-numerische Analyse mechanischer Eigenschaften von Aluminium/Magnesium-Werkstoffverbunden
- Author
-
Lehmann, Thomas, Stockmann, Martin, Ihlemann, Jörn, Lampke, Thomas, and Technische Universität Chemnitz
- Subjects
ddc:621.3 ,aluminum, magnesium, compound, extrusion, interface strength, interface crack, stress intensity factor, energy release rate, residual stress analysis, Digital Image Correlation ,Aluminium ,Magnesium ,Grenzfläche ,Strangpressen ,Festigkeit ,Linearelastische Bruchmechanik ,ddc:620 ,Aluminium, Magnesium, Verbund, Strangpressen, Interfacefestigkeit, Interfaceriss, Spannungsintensitätsfaktor, Energiefreisetzungsrate, Eigenspannungsanalyse, Digital Image Correlation - Abstract
Es werden hydrostatisch stranggepresste Aluminium/Magnesium-Verbunde untersucht. Mittels verschiedener Rissdetektionsmethoden wird die Beschaffenheit des Interface analysiert. Es erfolgt die Bestimmung von Fließkurven der verpressten Einzelwerkstoffe bei Raumtemperatur. Des Weiteren erfolgen Eigenspannungsanalysen mit dem Bohrlochverfahren und einer speziellen numerischen Auswertungsmethode, welche den Entstehungsprozess der Eigenspannungen berücksichtigt. Zur Analyse der Festigkeitseigenschaften und des Deformationsverhaltens des Interface werden Biegeversuche in einem erweiterten Temperaturbereich durchgeführt. Die Deformationsanalyse erfolgt mittels Digital Image Correlation. Des Weiteren finden in den Festigkeitsuntersuchungen Push-Out-Versuche Anwendung. In bruchmechanischen Analysen wird die Interfacerissspitze von speziell entwickelten Proben unter Mode I-Bedingungen, bezogen auf den homogenen Fall, beansprucht. Die bruchmechanischen Größen – kritischer betragsmäßiger Spannungsintensitätsfaktor und kritische Energiefreisetzungsrate – werden auf Basis der Experimente, der numerischen Simulation der Rissspitzenbeanspruchung sowie der für die linear-elastische Bruchmechanik des Interfacerisses geltenden Nahfeldgleichungen berechnet. Hydrostatic coextruded aluminum/magnesium compounds are analyzed. By means of different methods of crack detection, the quality of the interface is investigated. Plastic behavior of the basic materials at room temperature is determined. Furthermore, residual stress analyses are performed using the hole drilling method and a special numerical evaluation procedure, which considers the formation process of the residual stresses. The strength and deformation behavior of the interface are determined by means of bending tests in an extended temperature range. Digital Image Correlation is used to analyze the deformation. Furthermore, push out tests are performed to determine the interface strength. In the course of fracture mechanical analyses, the crack tip of specially developed specimens is stressed under Mode I conditions (relating to homogeneous material). The fracture mechanical values – critical absolute value of the stress intensity factor and critical energy release rate – are determined by the use of experiments, numerical analyses of the crack tip fields as well as the equations of the linear elastic near field equations of interface fracture mechanics.
- Published
- 2011
179. Simulation gekoppelter Relaxations- und Erholungsprozesse bei technischen Gummiwerkstoffen mittels rheologischer Modelle
- Author
-
Scheffler, Christian, Ihlemann, Jörn, and Technische Universität Chemnitz
- Subjects
Relaxation ,generalisiertes Prandtl-Element ,Scherversuch ,technische Gummiwerkstoffe ,Elastoplastizität ,kontinuierliches Prandtl-Element ,Speichermodul ,Erholungsprozess ,generalisiertes Maxwell-Element ,Viskoelastizität ,fraktionales Maxwell-Element ,ddc:600 ,Relaxationsprozess ,Simulation ,Verlustmodul ,rheologisches Modell - Abstract
Ziel der Arbeit ist es, auf der Basis von Messungen ein rheologisches Materialmodell für technische Gummiwerkstoffe zu erstellen, welches deren Eigenschaften nachbildet, insbesondere vorhandene komplexe Zusammenhänge zwischen Relaxation, Erholung, Versuchsgeschwindigkeit und Belastungsamplitude. Dabei wird sich auf die Simulation von großen einfachen, aber beliebigen Scherverformungen beschränkt, woraus ein skalarwertiges Modell resultiert. Anwendung finden generalisierte Maxwell-Elemente und generalisierte kontinuierliche Prandtl-Elemente. Verschiedene Modellvarianten werden diskutiert. Es wird ein Berechnungsprogramm unter MATLAB erstellt.
- Published
- 2009
180. Bestimmung elastischer Ersatzkennwerte von spongiösem Knochen mit Hilfe der Finite-Elemente-Methode
- Author
-
Lars Kanzenbach, Landgraf, Ralf, Ihlemann, Jörn, and Technische Universität Chemnitz
- Subjects
cancellous bone, fem, rve ,ddc:621.3 ,ddc:620 ,Biomechanik ,Finite-Elemente-Methode ,Spongiosa ,spongiösem Knochen, FEM, RVE - Abstract
The aim of this master’s thesis is to determine the effective material properties of cancellous bone. In the first part of this work, finite element models are used for numerical homogenization of trabecular structures. It is shown that the applied boundary conditions have a strong influence on the effective material properties. To this end, different boundary condition are opposed and discused. In the second part, the Levenberg-Marquardt method is used to identify the preferred direction. Furthermore, it is shown that cancellous bone can be modelled as a transverse isotropic material. Finally, the homogenized continua are compared with the microstructural models of cancellous bone. Ziel der Masterarbeit ist die Bestimmung der effektiven Materialparameter von spongiösem Knochen (lat. spongia „Schwamm“). Die numerische Homogenisierung von Trabekelstrukturen erfolgt mit Hilfe der Finite-Elemente-Methode. Es wird gezeigt, dass die verwendeten Randbedingungen einen starken Einfluss auf die effektiven Materialparameter ausüben. Die verschiedenen Randbedingungen werden dazu gegenübergestellt und diskutiert. Im zweiten Teil erfolgt mit Hilfe des Levenberg-Marquardt-Verfahrens die Identifizierung von ausgezeichneten Richtungen.Weiterhin wird gezeigt, dass die Spongiosa näherungsweise als transversalisotropes Material modelliert werden kann. Am Ende erfolgt der Vergleich des homogenen Ersatzkontinuums mit dem Mikrostrukturmodell der Spongiosa.
181. Experimentell-numerische Vorgehensweise zur Entwicklung von Probekörper-Setups für die Charakterisierung technischer Elastomere
- Author
-
Lars Kanzenbach, Ihlemann, Jörn, Kröger, Matthias, and Technische Universität Chemnitz
- Subjects
Tension-/compression tests, specimen-setup, specimen optimization, shear tests, shear device, homogeneous measuring zone, rubber materials, rubber phenomenology ,Finite-Elemente-Methode ,Simulation ,Experiment ,Probekörper ,Gummi ,ddc:621.3 ,Zug-/Druckmessungen, Probekörper-Setup, Probekörper Optimierung, Schermessungen, Schervorrichtung, homogener Messbereich, Gummiwerkstoffe, Gummi-Phänomenologie ,ddc:620 - Abstract
Für die Materialcharakterisierung und Parameteridentifikation von technischen Elastomeren werden homogene Probekörper benötigt. Eine besonders wichtige Beanspruchungsart ist dabei der einachsige Zug/Druck. Für Versuche dieser Art findet die Standard-Hantel Anwendung, die für kombinierte Zug-/Druckversuche geeignet ist. Allerdings lässt sich hier schon bei geringen Druckbelastungen ein inhomogener Messbereich detektieren. Ein Ziel dieser Arbeit besteht in der Entwicklung eines neuen und verbesserten Probekörpers, der für hochpräzise Zug-/Druckversuche geeignet ist. Im Gegensatz zur Standard-Hantel wird der für Messungen zugänglich gemachte homogene Messbereich deutlich verbessert. Darüber hinaus soll der Bereich der maximal erreichbaren Stauchung signifikant erhöht werden. Der Probekörper selbst weist dabei eine verhältnismäßig einfache Hantelgeometrie mit verlängertem Mittelteil auf. Durch ein spezielles Design der Halterungsgeometrie kann sowohl ein homogenes Verzerrungsfeld erreicht als auch eine hohe Knickstabilität gewährleistet werden. Die Grundidee besteht dabei darin, dass der Probekörper mit zunehmender Stauchung immer weiter mit der Halterungsgeometrie in Kontakt tritt und dadurch seine knickgefährdete Länge reduziert wird. Mit Hilfe eines speziellen Halterungsalgorithmus kann eine neue, verbesserte Halterungsgeometrie berechnet werden. Mit dem entwickelten Probekörper-Setup (bestehend aus Hantel- und Halterungsgeometrie) lassen sich dann eine Vielzahl phänomenologischer Eigenschaften von technischen Elastomeren wie Payne- Effekt, Mullins-Effekt, Erholungs- und Relaxationsverhalten vorzugsweise bei extremen Stauchungen (bis zu 70 %) untersuchen. Ein weiteres Ziel dieser Arbeit besteht in der Entwicklung eines Scherprobekörpers zur Realisierung präziser Schermessungen. Das Design soll dabei auf einem flächigen Probekörper (Elastomermatte) beruhen, um Alterungsuntersuchungen, Untersuchungen mit faserverstärkten Materialien und Versuche mit Vorreckungen realisieren zu können. Im Gegensatz zu herkömmlichen Scherprobekörpern soll dabei auf eine stoffschlüssige Verbindung mittels Kleben oder Anvulkanisieren aufgrund von Materialirritationen oder Schrumpf verzichtet werden. Im Rahmen dieser Arbeit wurde diesbezüglich ein spezielles Fixierdesign mit Stiften entwickelt, welches zur Ausbildung nahezu homogener Scherdeformationen führt. Damit lassen sich eine Vielzahl wichtiger Eigenschaften bei einer annähernd homogenen Scherdeformation untersuchen. Homogeneous test specimens are required for material characterization and model parameter identification. An important kind of loading is uniaxial tension/compression. For this, a standard dumbbell is available for combined tension-compression tests. But even for small compressive strains the standard dumbbell leads to an inhomogeneous stress state in the measuring zone. One aim of this work is the development of a new test specimen, which is suitable for high-precision tension/compression tests. In comparison to the standard dumbbell the homogeneity in the measuring zone is significantly improved. Furthermore, the range of maximal compression is increased substantially. The test specimen itself consists of a slender dumbbell structure. By a special design of the mounting geometry, homogeneous stress and strain fields as well as a high stability can be achieved. For an increasing compression, the test specimen comes into contact with the mounting geometry and the critical length is reduced. By means of dynamic analysis, the mounting geometry was calculated and optimized. This method is a powerful tool for developing new mounting geometries, by taking into account both the stability and the homogeneity characteristic. With the developed specimen-setup (consisting of dumbbell and mounting geometry), the phenomenological characteristics of rubber like Payne effect, Mullins effect, recovery and relaxation behavior can be investigated up to a compressive strain of 70 %. Another aim of this work is the development of a shear specimen, which enables precision shear measurements for large shear values. The design is based on a planar test specimen (rubber mat) in order to enable ageing tests, tests with fibre-reinforced materials and tests with pre-stretching. In contrast to other shear specimens, a material-locking connection by gluing or vulcanizing sould be avoided in consequence of material irritation or shrinkage. For this, a special fixing design was developed, which enables a uniform initiation of shear deformation for different rubber thicknesses. Finally, the new shear specimen enables the investigation of typical rubber properties.
182. Media for Dimensional Stabilization of Rubber Compounds during Additive Manufacturing and Vulcanization.
- Author
-
Drossel WG, Ihlemann J, Landgraf R, Oelsch E, and Schmidt M
- Abstract
The current article proposes a concept for the additive manufacturing of rubber components using extrusion-based 3D printing, in which an additional medium is added to ensure the maintenance of shape within the elastomeric structure during the additive manufacturing process and in the subsequent vulcanization process. Specific requirements for the dimensional stabilization of the media were defined and suitable media were derived. Silicone rubber, molding sand, and plaster were examined in experimental vulcanization tests for their suitability as possible media with regard to shape retention. Selected rubber geometries made of NBR were embedded in these media to undergo the vulcanization process. The results show a significant influence of the media on the heating times. All media were able to ensure that the rubber geometries maintained their shape during vulcanization. Nevertheless, some side effects were found. The silicone rubber did not cure properly around the rubber sample. Therefore, it was difficult to remove it from the rubber after vulcanization. The molding sand caused an increased surface roughness on the rubber. Plaster changed the glossy surfaces at the beginning to a matte one after vulcanization and residuals were difficult to remove. However, all media can serve as stabilization media with specific changes.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.