271 results on '"Brouwer, Piet"'
Search Results
252. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy
- Author
-
Seifert, Tom S, Jaiswal, Samridh, Barker, Joseph, Weber, Sebastian T, Razdolski, Ilya, Cramer, Joel, Gueckstock, Oliver, Maehrlein, Sebastian F, Nadvornik, Lukas, Watanabe, Shun, Ciccarelli, Chiara, Melnikov, Alexey, Jakob, Gerhard, Münzenberg, Markus, Goennenwein, Sebastian TB, Woltersdorf, Georg, Rethfeld, Baerbel, Brouwer, Piet W, Wolf, Martin, Kläui, Mathias, and Kampfrath, Tobias
- Subjects
Condensed Matter::Materials Science ,0299 Other Physical Sciences ,Condensed Matter::Strongly Correlated Electrons ,3. Good health - Abstract
Understanding the transfer of spin angular momentum is essential in modern magnetism research. A model case is the generation of magnons in magnetic insulators by heating an adjacent metal film. Here, we reveal the initial steps of this spin Seebeck effect with
253. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy
- Author
-
Seifert, Tom S., Jaiswal, Samridh, Barker, Joseph, Weber, Sebastian T., Razdolski, Ilya, Cramer, Joel, Gueckstock, Oliver, Maehrlein, Sebastian F., Nadvornik, Lukas, Watanabe, Shun, Ciccarelli, Chiara, Melnikov, Alexey, Jakob, Gerhard, Münzenberg, Markus, Goennenwein, Sebastian T. B., Woltersdorf, Georg, Rethfeld, Baerbel, Brouwer, Piet W., Wolf, Martin, Kläui, Mathias, and Kampfrath, Tobias
- Subjects
530 Physics ,530 Physik ,3. Good health
254. Letter
- Author
-
Brouwer,, Piet, primary
- Published
- 1989
- Full Text
- View/download PDF
255. Le Thomas More de Hendette Roland Holst
- Author
-
Brouwer, Piet, primary
- Published
- 1988
- Full Text
- View/download PDF
256. Z4 parafermions in an interacting quantum spin Hall Josephson junction coupled to an impurity spin.
- Author
-
Vinkler-Aviv, Yuval, Brouwer, Piet W., and von Oppen, Felix
- Subjects
- *
QUANTUM spin Hall effect , *SUPERCONDUCTING circuits , *HALL effect , *JOSEPHSON junctions , *JOSEPHSON effect - Abstract
Z4 parafermions can be realized in a strongly interacting quantum spin Hall Josephson junction or in a spin Hall Josephson junction strongly coupled to an impurity spin. In this paper, we study a system that has both features, but with weak (repulsive) interactions and a weakly coupled spin. We show that for a strongly anisotropic exchange interaction, at low temperatures the system enters a strong coupling limit in which it hosts two Z4 parafermions, characterizing a fourfold degeneracy of the ground state. We construct the parafermion operators explicitly and show that they facilitate fractional e/2 charge tunneling across the junction. The dependence of the effective low-energy spectrum on the superconducting phase difference reveals an 8p periodicity of the supercurrent. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
257. Klein Tunneling in Graphene p-n-p Junctions
- Author
-
Rossi, Enrico, Bardarson, Jens H., and Brouwer, Piet W.
- Abstract
We study the effect of the Klein tunneling on the transport properties of graphene p-n-p junctions. We first analyze the ideal case of a clean system and then study the realistic case in which disorder is present. To take into account the effect of disorder we develop a method for obtaining quantum transport properties in graphene that uniquely combines three crucial features: microscopic treatment of charge disorder, fully quantum mechanical analysis of transport, and the ability to model experimentally relevant system sizes. Our results allow us to conclude unambiguously that recent transport experiments on graphene p-n-p junctions have indeed observed signatures of Klein tunneling. The analysis presented is based on Rossi et al. Phys. Rev. B 81, 121408R.
- Published
- 2011
- Full Text
- View/download PDF
258. Interplay of Aharonov-Bohm and Berry phases in gate-defined graphene quantum dots.
- Author
-
Heini, Julia, Schneider, Martin, and Brouwer, Piet W.
- Subjects
- *
QUANTUM dots , *SEMICONDUCTORS , *GRAPHENE , *MAGNETIC flux , *MAGNETIC resonance , *ANGULAR momentum (Mechanics) , *FUNCTIONAL analysis - Abstract
We study the influence of a magnetic flux tube on the possibility to electrostatically confine electrons in a graphene quantum dot. Without a magnetic flux tube, the graphene pseudospin is responsible for a quantization of the total angular momentum to half-integer values. On the other hand, with a flux tube containing half a flux quantum, the Aharonov-Bohm phase and Berry phase precisely cancel, and we find a state at zero angular momentum that cannot be confined electrostatically. In this case, true bound states only exist in regular geometries for which states without zero-angular-momentum component exist, while nonintegrable geometries lack confinement. We support these arguments with a calculation of the two-terminal conductance of a gate-defined graphene quantum dot, which shows resonances for a disk-shaped geometry and for a stadium-shaped geometry without flux tube, but no resonances for a stadium-shaped quantum dot with a π-flux tube. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
259. Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.
- Author
-
Yang Peng, Vinkler-Aviv, Yuval, Brouwer, Piet W., Glazman, Leonid I., and von Oppen, Felix
- Subjects
- *
JOSEPHSON effect , *QUANTUM spin Hall effect , *ANISOTROPY - Abstract
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (orz4) fractional Josephson effect in the context of recent experiments. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
260. Magnetic Coupling of Gd3N@C80 Endohedral Fullerenes to a substrate.
- Author
-
Hermanns, Christian F., Bernien, Matthias, Krüger, Alex, Schmidt, Christian, Waßerroth, Sören T., Ahmadi, Gelavizh, Heinrich, Benjamin W., Schneider, Martin, Brouwer, Piet W., Franke, Katharina J., Weschke, Eugen, and Kuch, Wolfgang
- Subjects
- *
FULLERENES , *LIGHT elements , *CIRCULAR dichroism , *DICHROISM , *ROCK excavation , *SCANNING probe microscopy - Abstract
Using magnetic endohedral fullerenes for molecular spintronics requires control over their encapsulated magnetic moments. We show by field-dependent x-ray magnetic circular dichroism measurements of Gd3N@C80 endohedral fullerenes adsorbed on a Cu surface that the magnetic moments of the encapsulated Gd atoms lie in a 4f7 ground state and couple ferromagnetically to each other. When the molecules are in contact with a ferromagnetic Ni substrate, we detect two different Gd species. The more abundant one couples antiferromagnetically to the Ni, whereas the other one exhibits a stronger and ferromagnetic coupling to the substrate. Both of these couplings to the substrate can be explained by an indirect exchange mechanism mediated by the carbon cage. The origin of the distinctly different behavior may be attributed to different orientations and thus electronic coupling of the carbon cage to the substrate, as revealed by scanning tunneling microscopy of the fullerenes on Cu. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
261. Kitaev Honeycomb Model: Majorana Fermion Representation and Disorder
- Author
-
Zschocke, Fabian, Vojta, Matthias, Brouwer, Piet, and Technische Universität Dresden
- Subjects
Spinflüssigkeit, Majorana-Fermionen, Unordnung, Kondoeffekt, Kitaev-Modell ,ddc:530 ,Spinl liquid, Majorana fermions, Disorder, Kondo effect, Kitaev model - Abstract
Eine Vielzahl von interessanten Phänomenen entsteht durch die quantenmechanischeWechselwirkung einer großen Zahl von Teilchen. In den meisten Fällen ist die Beschreibung der relevanten physikalischen Eigenschaften extrem schwierig, da die Komplexität des Systems exponentiell mit der Anzahl der wechselwirkenden Teilchen anwächst und das Lösen der zugrunde liegenden Schrödingergleichung unmöglich macht. Trotzdem gab es in der Geschichte der Festkörperphysik eine Reihe von bahnbrechenden Entdeckungen, die unser Verständnis von komplexen Phänomenen deutlich voran gebracht haben. Dazu zählt die Entwicklung der Landau’schen Theorie der Fermiflüssigkeit, der BCS-Theorie der Supraleitung, der Theorie der Supraflüssigkeit und der Theorie des fraktionalen Quanten-Hall-Effekts. In all diesen Fällen ist ein theoretisches Verständnis mithilfe sogenannter Quasiteilchen gelungen. Anstatt ein komplexes Phänomen durch das Verhalten von fundamentalen Teilchen wie der Elektronen zu erklären, ist es möglich, die entsprechenden Eigenschaften durch das simple Verhalten von Quasiteilchen zu beschreiben, die allein auf Grund der komplexen kollektiven Wechselwirkung entstehen. Eines der seltenen Beispiele, bei dem ein stark korreliertes quantenmagnetisches Problem analytisch lösbar ist, ist das Kitaev Modell. Es beschreibt wechselwirkende Spins auf einem Sechseck-Gitter und zeichnet sich durch einen Spinflüssigkeits-Grundzustand aus. Auch hier gelang die Lösung mittels spezieller Quasiteilchen, den Majorana Fermionen. Experimentell ist es jedoch noch nicht gelungen eine Spinflüssigkeit eindeutig nachzuweisen, da diese sich gerade durch das Fehlen jeglicher klassischer Ordnung und üblicher experimenteller Kenngrößen auszeichnet. Dagegen kann die Beobachtung von Quasiteilchenanregungen einen Hinweis auf den zugrunde liegenden Zustand liefern. Aber auch der definitive Nachweis von Majorana Fermionen in jeglicher Art System, bleibt ein ausstehendes Ziel in der modernen Festkörperphysik. Diese Arbeit befasst sich daher mit der Frage, wie solche Quasiteilchen experimentell sichtbar gemacht werden könnten. Dazu untersuchen wir den Einfluss von Unordnung auf die Zustände und Messgrößen des Kitaev Modells. Dies ist in zweierlei Hinsicht relevant. Einerseits ist Unordnung in der Natur allgegenwärtig, andererseits kann sie auch strategisch herbeigeführt werden, um die Reaktion eines System gezielt zu testen. Das zentrale Ergebnis dieser Arbeit ist, dass den Majorana Fermionen dabei in der Tat eine physikalische, messbare Bedeutung zukommt. Die Arbeit beginnt mit einer Einführung in frustrierte quantenmagnetische Systeme und Spinflüssigkeiten und diskutiert einige Effekte, die durch Gitterverzerrungen oder Verunreinigungen entstehen können. Anschließend zeigen wir, wie sich durch die frustrierte Wechselwirkung im Kitaev Modell ein Spinflüssigkeits-Grundzustand herausbildet. Die analytische Lösung des Modells gelingt mit Hilfe von Majorana Fermionen, jedoch verdoppelt sich der Hilbertraum pro Spin durch die Einführung dieser Quasiteilchen. Ein zentraler Aspekt dieser Arbeit ist daher die richtige Auswahl der „physikalischen“ Zustände, also solcher, die einem Zustand im ursprünglichen Spin Modell entsprechen. Dabei unterscheiden wir zwischen offenen und periodischen Randbedingungen. Wir konnten beweisen, dass sich, in der Phase ohne Bandlücke und für periodische Systeme, stets ein angeregtes Fermion befindet. Dies führt zu großen Effekten in endlichen Systemen, wie wir anhand der Suszeptibilität und der Anregungslücke für magnetische Flüsse zeigen. Außerdem berechnen wir numerisch die statische und dynamische Suszeptibilität abhängig von der Unordnung in der Wechselwirkungsstärke. Diese Art der Unordnung entsteht beispielsweise durch unregelmäßige Gitterstrukturen oder chemische Verunreinigungen auf den nicht-magnetischen Gitterplätzen. Insbesondere ergibt die Verteilung der lokalen Suszeptibilitäten das Linienspektrum, welches sich in Kernspinresonanz Experimenten messen lässt. Für große Unordnung postulieren wir einen Übergang zu einem Zustand mit einer zufälligen Verteilung magnetischer Flüsse. Ein weiterer Kern der Dissertation ist die Untersuchung eines magnetischen Defekts im Kitaev Modell. Diese Situation beschreibt den ungewöhnlichen Fall eines Kondoeffekts in einer Spinflüssigkeit. In der Majorana Fermionen Darstellung gelingt es uns, das Problem in eine Form zu bringen, die mit Hilfe von Wilson’s numerischer Renormalisierungsgruppe untersucht werden kann. Es zeigt sich, dass dadurch eine Nullpunktsentropie des Defekts entsteht, die durch lokalisierte Majorana Fermionen erklärt werden kann. Durch die Darstellung des Kitaev Modells mithilfe von Quasiteilchen ist es möglich eine elegante Beschreibung eines komplexen, stark wechselwirkenden Systems zu finden. Die Ergebnisse dieser Arbeit zeigen, dass den Majorana Fermionen dabei durchaus eine physikalische Bedeutung zukommt. Gelingt es sie z.B. durch magnetische Störstellen zu lokalisieren, wäre ein direkter experimenteller Nachweis möglich. Many interesting phenomena in quantum physics arise through the quantum mechanical interaction of a large number of particles. In most cases describing the relevant physical properties is extremely difficult, because the complexity of the system increases exponentially with the number of interacting particles and solving the underlying Schrödinger equation becomes impossible. Nevertheless, our understanding of complex phenomena has progressed through some groundbreaking discoveries in the history of condensed matter physics. Examples include the development of Landau’s theory of Fermi liquids, the BCStheory of superconductivity, the theory of superfluidity and the theory of the fractional quantum Hall effect. In all these cases a theoretical understanding was achieved with so-called quasi-particles. Instead of explaining a phenomenon through the behavior of fundamental particles, such as electrons, the corresponding properties can be described by the simple behavior of quasi-particles, which are themselves a result of the complex collective interaction. One of the rare examples, where a strongly correlated quantum mechanical problem can be solved analytical, is the Kitaev model. It describes interacting spins on a honeycomb lattice and exhibits a spin liquid ground state. Here the solution was achieved by means of certain quasi-particles, called Majorana fermions. However, it has not been possible to clearly identify such a spin liquid experimentally, because its defining feature is the absence of any conventional order, in particular magnetic order. In contrast, the observation of quasiparticle excitations may hint at the nature of the ground state. But also a definite detection of Majorana fermions in any kind of system remains one of the outstanding issues in modern condensed matter physics. Therefore this thesis is devoted to the question how such quasiparticles may be found experimentally. For this reason we study the influence of disorder on the states and observables of the Kitaev model. This is relevant in two respects: Firstly, disorder is ubiquitous in nature and secondly, it may be used strategically to probe the response of a system. The central result of this work is that Majorana fermions hereby indeed obtain a true physical and observable significance. The thesis starts with an introduction of frustrated quantum mechanical systems and spin liquids, and discusses some of the effects that arise through lattice distortions or impurities. Afterwards we show how the frustrated interactions in the Kitaev model lead to a spin liquid ground state. The analytical solution of the model is achieved through the introduction of Majorana fermions. However, resulting from the introduction of these quasi-particles the Hilbert space per spin doubles. A central aspect of this thesis is therefore the right selection of the “physical” states, which correspond to a state of the original spin Hamiltonian. To do this, we distinguish between periodic and open boundary conditions explicitly. We were able to prove that there is always one excited fermion in the gapless phase of the periodic system. This leads to large finite-size effects, as we will illustrate for the susceptibility and the magnetic flux gap. Moreover we compute the static and dynamic spin susceptibilities for finite-size systems subject to disorder in the exchange couplings. In a possible experimental realization, this kind of disorder arises from lattice distortions or chemical disorder on nonmagnetic sites. Specifically, we calculate the distribution of local susceptibilities and extract the lineshape, which can be measured in nuclear-magnetic-resonance experiments. Further, for increasing disorder we predict a transition to a random-flux state. Another core of this dissertation is the investigation of a magnetic impurity in the Kitaev model. This setup represents the unusual case of a Kondo effect in a quantum spin liquid. Utilizing the Majorana representation we are able to formulate the problem in a way that can be analyzed using Wilson’s numerical renormalization group. The numerics reveal an impurity entropy which can be explained by localized Majorana fermions. Through the representation of the Kitaev model in terms of quasi-particles an elegant description of a complex, strongly correlated system is possible. The results of this thesis indicate that these Majorana acquire a relevant physical meaning. If one can localize them, for example with the help of magnetic impurities, a direct experimental observation would be feasible.
- Published
- 2016
262. Reflection-Symmetric Second-Order Topological Insulators and Superconductors.
- Author
-
Langbehn, Josias, Yang Peng, Trifunovic, Luka, von Oppen, Felix, and Brouwer, Piet W.
- Subjects
- *
TOPOLOGICAL insulators , *OPTICAL reflection - Abstract
Second-order topological insulators are crystalline insulators with a gapped bulk and gapped crystalline boundaries, but with topologically protected gapless states at the intersection of two boundaries. Without further spatial symmetries, five of the ten Altland-Zirnbauer symmetry classes allow for the existence of such second-order topological insulators in two and three dimensions. We show that reflection symmetry can be employed to systematically generate examples of second-order topological insulators and superconductors, although the topologically protected states at corners (in two dimensions) or at crystal edges (in three dimensions) continue to exist if reflection symmetry is broken. A three-dimensional second-order topological insulator with broken time-reversal symmetry shows a Hall conductance quantized in units of e²/h. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
263. Terahertz Spin-Conductance Spectroscopy: Probing Coherent and Incoherent Ultrafast Spin Tunneling.
- Author
-
Rouzegar R, Wahada MA, Chekhov AL, Hoppe W, Bierhance G, Jechumtál J, Nádvorník L, Wolf M, Seifert TS, Parkin SSP, Woltersdorf G, Brouwer PW, and Kampfrath T
- Abstract
Thin-film stacks F | H consisting of a ferromagnetic-metal layer F and a heavy-metal layer H are spintronic model systems. Here, we present a method to measure the ultrabroadband spin conductance across a layer X between F and H at terahertz frequencies, which are the natural frequencies of spin-transport dynamics. We apply our approach to MgO tunneling barriers with thickness d = 0-6 Å. In the time domain, the spin conductance G
s has two components. An instantaneous feature arises from processes like coherent spin tunneling. Remarkably, a longer-lived component is a hallmark of incoherent resonant spin tunneling mediated by MgO defect states, because its relaxation time grows monotonically with d to as much as 270 fs at d = 6.0 Å. Our results are in full agreement with an analytical model. They indicate that terahertz spin-conductance spectroscopy will yield new and relevant insights into ultrafast spin transport in a wide range of spintronic nanostructures.- Published
- 2024
- Full Text
- View/download PDF
264. Accessing Ultrafast Spin-Transport Dynamics in Copper Using Broadband Terahertz Spectroscopy.
- Author
-
Jechumtál J, Rouzegar R, Gueckstock O, Denker C, Hoppe W, Remy Q, Seifert TS, Kubaščík P, Woltersdorf G, Brouwer PW, Münzenberg M, Kampfrath T, and Nádvorník L
- Abstract
We study the spatiotemporal dynamics of ultrafast electron spin transport across nanometer-thick copper layers using ultrabroadband terahertz emission spectroscopy. Our analysis of temporal delays, broadening, and attenuation of the spin-current pulse reveals ballisticlike propagation of the pulse peak, approaching the Fermi velocity, and diffusive features including a significant velocity dispersion. A comparison to the frequency-dependent Fick's law identifies the diffusion-dominated transport regime for distances >2 nm. These findings lay the groundwork for designing future broadband spintronic devices.
- Published
- 2024
- Full Text
- View/download PDF
265. Non-Abelian Holonomy of Majorana Zero Modes Coupled to a Chaotic Quantum Dot.
- Author
-
Geier M, Krøjer S, von Oppen F, Marcus CM, Flensberg K, and Brouwer PW
- Abstract
If a quantum dot is coupled to a topological superconductor via tunneling contacts, each contact hosts a Majorana zero mode in the limit of zero transmission. Close to a resonance and at a finite contact transparency, the resonant level in the quantum dot couples the Majorana modes, but a ground-state degeneracy per fermion parity subspace remains if the number of Majorana modes coupled to the dot is five or larger. Upon varying shape-defining gate voltages while remaining close to resonance, a nontrivial evolution within the degenerate ground-state manifold is achieved. We characterize the corresponding non-Abelian holonomy for a quantum dot with chaotic classical dynamics using random matrix theory and discuss measurable signatures of the non-Abelian time evolution.
- Published
- 2024
- Full Text
- View/download PDF
266. Fermi-Arc Metals.
- Author
-
Breitkreiz M and Brouwer PW
- Abstract
We predict a novel metallic state of matter that emerges in a Weyl-semimetal superstructure with spatially varying Weyl-node positions. In the new state, the Weyl nodes are stretched into extended, anisotropic Fermi surfaces, which can be understood as being built from Fermi arclike states. This "Fermi-arc metal" exhibits the chiral anomaly of the parental Weyl semimetal. However, unlike in the parental Weyl semimetal, in the Fermi-arc metal the "ultraquantum state," in which the anomalous chiral Landau level is the only state at the Fermi energy, is already reached for a finite energy window at zero magnetic field. The dominance of the ultraquantum state implies a universal low-field ballistic magnetoconductance and the absence of quantum oscillations, making the Fermi surface "invisible" to de Haas-van Alphen and Shubnikov-de Haas effects, although it signifies its presence in other response properties.
- Published
- 2023
- Full Text
- View/download PDF
267. Nucleation of Ergodicity by a Single Mobile Impurity in Supercooled Insulators.
- Author
-
Krause U, Pellegrin T, Brouwer PW, Abanin DA, and Filippone M
- Abstract
We consider a disordered Hubbard model and show that, at sufficiently weak disorder, a single spin-down mobile impurity can thermalize an extensive initially localized system of spin-up particles. Thermalization is enabled by resonant processes that involve correlated hops of the impurity and localized particles. This effect indicates that Anderson localized insulators behave as "supercooled" systems, with mobile impurities acting as ergodic seeds. We provide analytical estimates, supported by numerical exact diagonalization, showing how the critical disorder strength for such mechanism depends on the particle density of the localized system. In the U→∞ limit, doublons are stable excitations, and they can thermalize mesoscopic systems by a similar mechanism. The emergence of an additional conservation law leads to an eventual localization of doublons. Our predictions apply to fermionic and bosonic systems and are readily accessible in ongoing experiments simulating synthetic quantum lattices with tunable disorder.
- Published
- 2021
- Full Text
- View/download PDF
268. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy.
- Author
-
Seifert TS, Jaiswal S, Barker J, Weber ST, Razdolski I, Cramer J, Gueckstock O, Maehrlein SF, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein STB, Woltersdorf G, Rethfeld B, Brouwer PW, Wolf M, Kläui M, and Kampfrath T
- Abstract
Understanding the transfer of spin angular momentum is essential in modern magnetism research. A model case is the generation of magnons in magnetic insulators by heating an adjacent metal film. Here, we reveal the initial steps of this spin Seebeck effect with <27 fs time resolution using terahertz spectroscopy on bilayers of ferrimagnetic yttrium iron garnet and platinum. Upon exciting the metal with an infrared laser pulse, a spin Seebeck current j
s arises on the same ~100 fs time scale on which the metal electrons thermalize. This observation highlights that efficient spin transfer critically relies on carrier multiplication and is driven by conduction electrons scattering off the metal-insulator interface. Analytical modeling shows that the electrons' dynamics are almost instantaneously imprinted onto js because their spins have a correlation time of only ~4 fs and deflect the ferrimagnetic moments without inertia. Applications in material characterization, interface probing, spin-noise spectroscopy and terahertz spin pumping emerge.- Published
- 2018
- Full Text
- View/download PDF
269. Magnetic coupling of Gd3N@C80 endohedral fullerenes to a substrate.
- Author
-
Hermanns CF, Bernien M, Krüger A, Schmidt C, Waßerroth ST, Ahmadi G, Heinrich BW, Schneider M, Brouwer PW, Franke KJ, Weschke E, and Kuch W
- Abstract
Using magnetic endohedral fullerenes for molecular spintronics requires control over their encapsulated magnetic moments. We show by field-dependent x-ray magnetic circular dichroism measurements of Gd3N@C80 endohedral fullerenes adsorbed on a Cu surface that the magnetic moments of the encapsulated Gd atoms lie in a 4f7 ground state and couple ferromagnetically to each other. When the molecules are in contact with a ferromagnetic Ni substrate, we detect two different Gd species. The more abundant one couples antiferromagnetically to the Ni, whereas the other one exhibits a stronger and ferromagnetic coupling to the substrate. Both of these couplings to the substrate can be explained by an indirect exchange mechanism mediated by the carbon cage. The origin of the distinctly different behavior may be attributed to different orientations and thus electronic coupling of the carbon cage to the substrate, as revealed by scanning tunneling microscopy of the fullerenes on Cu.
- Published
- 2013
- Full Text
- View/download PDF
270. Physics. Enter the Majorana fermion.
- Author
-
Brouwer PW
- Published
- 2012
- Full Text
- View/download PDF
271. Fluctuations of g factors in metal nanoparticles: effects of electron-electron interaction and spin-orbit scattering.
- Author
-
Gorokhov DA and Brouwer PW
- Abstract
We investigate the combined effect of spin-orbit scattering and electron-electron interactions on the probability distribution of g factors of metal nanoparticles. Using random matrix theory, we find that even a relatively small interaction strength significantly increases g-factor fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate and single-electron level spacing 1/tau(so)delta < or near 1), and leads to the possibility to observe g factors larger than 2.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.