361 results on '"Bavdaz, Marcos"'
Search Results
352. Silicon pore optics mirror module production and testing
- Author
-
Sodnik, Zoran, Karafolas, Nikos, Cugny, Bruno, Collon, Maximilien J., Vacanti, Giuseppe, Barrière, Nicolas M., Landgraf, Boris, Günther, Ramses, Vervest, Mark, Voruz, Luc, Verhoex, Sjoerd, Babić, Ljubiša, van der Hoeven, Roy, van Straeten, Kim, Chatbi, Abdel, Girou, David, Beijersbergen, Marco W., Bavdaz, Marcos, Wille, Eric, Fransen, Sebastiaan, Shortt, Brian, Ferreira, Ivo, Haneveld, Jeroen, Koelewijn, Arenda, Booysen, Karin, Wijnperle, Maurice, Lankwarden, Jan-Joost, van Baren, Coen, Eigenraam, Alexander, den Herder, Jan Willem, Müller, Peter, Krumrey, Michael, Burwitz, Vadim, Pareschi, Giovanni, Massahi, Sonny, Della Monica Ferreira, Desiree, Christensen, Finn E., Valsecchi, Giuseppe, Oliver, Paul, Chequer, Ian, Ball, Kevin, Zuknik, Karl-Heinz, and Vernani, Dervis
- Published
- 2019
- Full Text
- View/download PDF
353. Fabrication of inductive grid filters for rejection of infrared radiation.
- Author
-
Jefimovs, Konstantins, Kettunen, Ville, Honkanen, Marko, Kuittinen, Markku, Turunen, Jari P., Vahimaa, Pasi, Kaipiainen, Matti, Nenonen, Seppo A. A., and Bavdaz, Marcos
- Published
- 2003
- Full Text
- View/download PDF
354. Integration of the ATHENA mirror modules: development status of the indirect and direct x-ray methods
- Author
-
den Herder, Jan-Willem A., Nikzad, Shouleh, Nakazawa, Kazuhiro, Vernani, Dervis, Blum, Steffen, Seure, Thibault, Bavdaz, Marcos, Wille, Eric, Barriere, Nicolas, Collon, Maximilien J., Vacanti, Giuseppe, Cibik, Levent, Krumrey, Michael, Mueller, Peter, and Burwitz, Vadim
- Published
- 2018
- Full Text
- View/download PDF
355. Design, development, and performance of x-ray mirror coatings for the ATHENA mission
- Author
-
O'Dell, Stephen L., Pareschi, Giovanni, Della Monica Ferreira, Desiree, Massahi, Sonny, Christensen, Finn E., Shortt, Brian, Bavdaz, Marcos, Collon, Maximilien J., Landgraf, Boris, Gellert, Nis C., Korman, Jakob, Dalampiras, Paschalis, Rasmussen, Ida F., Kamenidis, Ifikratis, Krumrey, Michael, and Schreiber, Swenja
- Published
- 2017
- Full Text
- View/download PDF
356. Silicon pore optics for the ATHENA telescope
- Author
-
den Herder, Jan-Willem A., Takahashi, Tadayuki, Bautz, Marshall, Collon, Maximilien J., Vacanti, Giuseppe, Günther, Ramses, Yanson, Alex, Barriere, Nicolas, Landgraf, Boris, Vervest, Mark, Chatbi, Abdelhakim, van der Hoeven, Roy, Beijersbergen, Marco W., Bavdaz, Marcos, Wille, Eric, Shortt, Brian, Haneveld, Jeroen, Koelewijn, Arenda, van Baren, Coen, Eigenraam, Alexander, Müller, Peter, Krumrey, Michael, Burwitz, Vadim, Pareschi, Giovanni, Conconi, Paolo, Massahi, Sonny, Christensen, Finn E., and Valsecchi, Giuseppe
- Published
- 2016
- Full Text
- View/download PDF
357. Mass production of silicon pore optics for ATHENA
- Author
-
den Herder, Jan-Willem A., Takahashi, Tadayuki, Bautz, Marshall, Wille, Eric, Bavdaz, Marcos, and Collon, Maximilien
- Published
- 2016
- Full Text
- View/download PDF
358. The ATHENA optics development
- Author
-
den Herder, Jan-Willem A., Takahashi, Tadayuki, Bautz, Marshall, Bavdaz, Marcos, Wille, Eric, Shortt, Brian, Fransen, Sebastiaan, Collon, Maximilien, Barriere, Nicolas, Yanson, Alexei, Vacanti, Giuseppe, Haneveld, Jeroen, van Baren, Coen, Zuknik, Karl-Heinz, Christensen, Finn, Della Monica Ferreira, Desiree, Krumrey, Michael, Burwitz, Vadim, Pareschi, Giovanni, Spiga, Daniele, Valsecchi, Giuseppe, and Vernani, Dervis
- Published
- 2016
- Full Text
- View/download PDF
359. Integral Approach for Hybrid Manufacturing of Large Structural Titanium Space Components
- Author
-
Seidel, André, Leyens, Christoph, Zimmermann, Martina, Bavdaz, Marcos, Technische Universität Dresden, and European Space Agency
- Subjects
Advanced Telescope for High-ENergy Astrophysics (ATHENA), hybrid machining, laser metal deposition, cryogenic machining, Ti6Al4V ,ddc:621.3 ,ddc:620 - Abstract
This thesis presents a newly developed manufacturing method, based on cyber-physically enhanced hybrid machining, regarding an optical bench (OB) made of Ti6Al4V alloy for the Advanced Telescope for High-ENergy Astrophysics (ATHENA). The method includes sophisticated hybrid laser metal deposition equipment and state-of-the-art cryogenic machining hardware. The derived strategy combines localized energy input, preheating, heat treatment, intermediate stress relief and machining. This results in a complex thermal history and remaining residual stresses, representing a considerable challenge for final precision machining. The method targets first time right machining based on iterative machining, process data-based tool path correction and spatially resolved root cause research based on process data modeling.:II. Table of Contents I. Acknowledgement ............................................................ III II. Table of Contents ................................................................. I 1. Introduction ........................................................................ 1 1.1 Foreword .................................................................................... 1 1.2 Research Subject Lot Size One ....................................................... 2 1.2.1 Historical Perspective ................................................................. 2 1.2.2 Going Full Cycle ......................................................................... 3 2. State of the Art in Titanium Processing ............................... 4 2.1 Conventional Processing................................................................ 4 2.2 Additive Manufacturing ................................................................. 5 2.2.1 Introduction .............................................................................. 5 2.2.2 Powder Bed Fusion ..................................................................... 6 2.2.3 Direct Energy Deposition ............................................................. 8 3. Derivation of a Flexible Hybrid Manufacturing System ...... 11 3.1 The ATHENA OB – a Large Structural Space Component ..................11 3.2 Material Constraints ....................................................................12 3.3 Solidification and Microstructural Content .......................................17 3.4 Residual Stresses and Intrinsic Heat Treatment ..............................22 3.4.1 Transient Temperature Gradients ................................................22 3.4.2 Residual Stresses and Degree of Fixity ........................................24 3.4.3 In-situ Stress Relief and Plastic Deformation ................................28 3.4.4 In-situ Martensite Decomposition and Thermal Trade-off ...............30 3.5 Melt Pool Considerations in Laser Metal Deposition ..........................36 3.6 Concept of Flexible Hybrid Manufacturing Cell .................................43 3.7 Process and Equipment Review by ESA ..........................................45 4. Realization of a Flexible Manufacturing Cell ...................... 45 4.1 Additive Processing with Hybrid Laser Metal Deposition ....................45 4.1.1 Principle Hardware ....................................................................45 4.2 Novel Local Shielding Solution ......................................................47 4.2.1 Melt Pool Observation towards Process Data Model ........................51 4.2.2 Energy Source Coupling .............................................................57 4.3 Subtractive Processing with Cryogenic Milling .................................57 4.3.1 General Considerations for Subtractive Processing ........................57 4.3.2 Cryogenic Machining Approach ...................................................58 4.3.3 Cryogenic Machining from the Materials Viewpoint ........................60 4.3.4 Cryogenic Machining of Additively Manufactured Ti-6Al-4V .............62 4.3.5 Principle Hardware for Cryogenic Milling with CO2..........................66 4.3.6 Intelligent Tool Spindle Future Part of the Process Data Model ........69 4.3.7 Carbon Dioxide Weighing Equipment and Switching Station ............70 4.3.8 Protective Measures for Safe Use of Cryogenic CO2 .......................72 4.4 Handling System .........................................................................74 4.4.1 Framework Considerations .........................................................74 4.4.2 Twin Robot System in the Initial State .........................................76 4.4.3 Integration of the ATHENA Turntable ...........................................79 4.4.4 Robot Calibration ......................................................................81 4.5 Lighting for Visual Inspection ........................................................84 4.6 Critical Design Review by ESA .......................................................84 5. Implementation and Validation ......................................... 85 5.1 Powdery Filler Material Selection ...................................................85 5.2 Basic Parameter Set for Additive Manufacturing ..............................87 5.2.1 Operating Point Selection ...........................................................87 5.2.2 Characterization and evaluation ..................................................89 5.2.3 Substrate to Structure Transition ................................................95 5.3 Energy Source Coupling ...............................................................99 5.3.1 Process Development ................................................................99 5.3.2 As-built Surface Treatment ...................................................... 103 5.3.3 Heat Treatment ...................................................................... 104 5.3.4 Mechanical Testing .................................................................. 106 5.3.5 Fractured Surfaces .................................................................. 108 5.3.6 Microstructure ........................................................................ 110 5.3.7 Linear Expansion Coefficient ..................................................... 113 5.4 Cryogenic Milling ....................................................................... 114 5.4.1 Strategy Approach .................................................................. 114 5.4.2 Milling Implementation ............................................................ 116 5.4.3 Technical Cleanliness ............................................................... 120 5.4.4 Accuracy and Duration ............................................................. 122 5.4.5 Surface Roughness.................................................................. 122 5.5 Process Data Model ................................................................... 123 6. Final Discussion and Conclusions..................................... 130 6.1 Summary ................................................................................. 130 6.2 Conclusions .............................................................................. 131 6.3 Outlook .................................................................................... 132 III. List of Figures ...................................................................... I IV. List of Tables .................................................................. VIII V. References ......................................................................... IX VI. Symbols and Units ....................................................... XXXVI VII. Abbreviations .............................................................. XXXIX VIII. Annex I ............................................................................ XLI IX. Annex II ....................................................................... XLIII X. Annex III ....................................................................... XLIV XI. Annex IV.......................................................................... XLV XII. Annex V ......................................................................... XLVI XIII. Annex VI....................................................................... XLVII XIV. Annex VII ................................................................... XLVIII
- Published
- 2021
360. SWORDS - SoftWare fOR Diffraction Simulation of silicon pore optics: the user manual
- Author
-
Spiga, Daniele, ITA, Bavdaz, Marcos, and Ferreira, Ivo
- Abstract
This brief document is a quick guide through the usage of SWORDS, a SPO diffraction simulation tool developed in the SImPOSIUM project for the ATHENA X-ray telescope under IDL® environment. This tool allows the user to simulate the PSF of an SPO XOU or MM using physical optics, therefore including the effects of diffraction and figure errors. This program, released to ESA in the ISR of the project, is to some extent the 2D equivalent of the WISE simulation code working in 1D for grazing incidence mirrors. The code is still been developed, but already fully functional. A previous manual for the simulation tool (release 3.0) was already issued in 2020. The current manual refers to the version 3.7.2 of SWORDS. Some new functionalities to the program include: - correction of numerical bugs, label reorganization, and window restyling; - uniform curvature profile as an alternative to Wolter-I; - gaussian line profile for non-monochromatic sources; - gaussian-shaped sources; - random (quasi-gaussian) phases in sinusoidal errors; - random (quasi-gaussian) amplitudes in sinusoidal errors; - memory cleanup during and after each routine execution; - improved computation speed by exchanging image cropping and resampling; - custom path selectable by the user; - added P-H misalignment around the z-axis; - constraint to minimum pixel size; - maximum CCD array size limited to 4000 ́ 4000; - azimuthal edge effects; - 2D polynomial errors; - aberrations due to finite distance and off-axis of the source; - capability to load and use a set measured plate(s) figure error from ASCII file(s); - inclusion/exclusion of the OPD terms into/from the computation of the diffraction figure; - wavefront leveling for keeping the focal spot centered in the field; - automatic best focus computation; - *.fits output formatted to match fits standards.
- Published
- 2021
361. Free-standing inductive grid filter for infrared radiation rejection
- Author
-
Jefimovs, Konstantins, Laukkanen, Janne, Vallius, Tuomas, Pilvi, Tero, Ritala, Mikko, Meilahti, Tomi, Kaipiainen, Matti, Bavdaz, Marcos, Leskelä, Markku, and Turunen, Jari
- Subjects
- *
INFRARED radiation , *METALLIC glasses , *ELECTRON beams , *LITHOGRAPHY - Abstract
Abstract: We developed a fabrication method for free-standing metal structures with high aspect ratios to manufacture inductive grid filters for infrared rejection. Deep grooves in thermally evaporated SiO2 layer, fabricated by electron beam lithography and etching, were filled with iridium by atomic layer deposition technique. Characterization shows that the fabricated structures can suppress infrared radiation over two orders of magnitude while transmitting 40% of XUV radiation. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.