301. Formin-mediated actin polymerization at cell-cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair.
- Author
-
Rao MV and Zaidel-Bar R
- Subjects
- Actin Cytoskeleton metabolism, Actins metabolism, Adherens Junctions metabolism, Animals, Cadherins physiology, Carrier Proteins metabolism, Cell Adhesion, Cell Line, Cell Movement, Epithelial Cells metabolism, Epithelium metabolism, Fetal Proteins metabolism, Formins, Intercellular Junctions metabolism, Mice, Microfilament Proteins metabolism, Nuclear Proteins metabolism, Polymerization, Wound Healing physiology, Wounds and Injuries metabolism, Cadherins metabolism, Proteins metabolism
- Abstract
Cadherin-mediated cell-cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell-cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell-cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell-cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell-cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair., (© 2016 Rao and Zaidel-Bar. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).)
- Published
- 2016
- Full Text
- View/download PDF