Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as "smart magnetic nanophotocatalyst" for industry waste water treatment., {"references":["Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M., (2001)\n\"Highly polarized photoluminescence and photodetection from single\nindium phosphide nanowires\", Science, 293, 1455-1457.","Zhong, Z., Qian, F., Wang, D., Lieber, C.M., (2003) \"Synthesis of p-type\ngallium nitride nanowires for electronic and photonic nanodevices\",\nNanoletters, 3 (3), 343-346.","Hahm, J., Lieber, C.M., (2004) \"Direct ultrasensitive electrical detection\nof DNA and DNA sequence variations using nanowire nanosensors\",\nNanoletters, 4 (1), 51-54.","Alivisatos, A.P., (1996) \"Semiconductor clusters, nanocrystals, and\nquantum dots\", Science, 271, 933-937.","Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A., (2005) \"Chemistry\nand properties of nanocrystals of different shapes\", Chem. Rev., 105,\n1025-1102.","Zhitenev, N.B., Fulton, T.A., Yacob, A., Hess, H.F., Pfeiffer, L.N., West,\nK.W., (2000) \"Imaging of localized electronic states in the quantum Hall\nregime\", Nature, 404, 473-476.","Suen, Y.W., Engel, L.W., Santos, M.B., Shayegan, M., Tsui D.C., (1992)\n\"Observation of a ˆI› = 1/2 fractional quantum Hall state in a\ndouble-layer electron system\", Phys. Rev. Lett., 68, 1379-1382.","Stormer, H.L., (1998) \"Fractional quantum Hall effect today\", Solid State\nCommun., 107, 617-620.","Stormer, H.L., Du, R.R., Kang, W., Tsui, D.C., Peeiffer, L.N., Baldwin,\nK.W., West, K.W., (1994) \"The fractional quantum Hall effect in a new\nlight\", Semicond. Sci. Technol., 9, 1853-1858.\n[10] Wang, Z.L., (2004) \"Nanostructures of zinc oxide\", Mater. Today, 7 (6),\n26-33.\n[11] Cao, H., Xu, J.Y., Zhang, D.Z., Chang, S.H., Ho, S.T., Seelig, E.W., Liu,\nX., Chang, R.P.H., (2000) \"Spatial confinement of laser light in active\nrandom media\", Phys. Rev. Lett., 84, 5584-5587.\n[12] Bagnall, D.M., Chen, Y.F., Zhu, Z., Yao, T., Koyama, S., Shen, M.Y.,\nGoto, T., (1997) \"Optically pumped lasing of ZnO at room temperature\",\nAppl. Phys. Lett., 70, 2032-2230.\n[13] Yu, P., Tang, Z.K., Wong, K.L., Kawasaki, M., Ohtomo, A., Koinuma,\nH., Segawa, Y., (1998) \"Room-temperature gain spectra and lasing in\nmicrocrystalline ZnO thin films\", J. Cryst. Growth, 184/185, 601-604.\n[14] Kayamura, Y., (1988) \"Quantum-size effects of interacting electrons and\nholes in semiconductor microcrystals with spherical shape\", Phys. Rev. B,\n38, 9797-9805.\n[15] Wegscheider, W., Pfeiffer, L.N., Dignam, M.M., Pinczuk, A. W., West,\nK., McCall, S.L., Hull, R., (1993) \"Lasing from excitons in quantum\nwires\", Phys. Rev. Lett., 71, 4071-4074.\n[16] Garcia, M.A., Merino, J.M., Pinel, E.F., Quesada, A., Venta, J., Gonzalez,\nM.L.R., Castro, G.R., Crespo, P., Llopis, J., G-Calbet, J.M., Hernando, A.,\n(2007) \"Magnetic properties of ZnO nanoparticles\", Nanoletters, 7,\n1489-1494.\n[17] Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E.,\nRusso, R., Yang, P., (2001) \"Room-temperature ultraviolet nanowire\nnanolasers\", Science, 292, 1879-1897.\n[18] Wang, X., Song, J., Liu, J., Wang, Z.L., (2007) \"Direct-current\nnanogenerator driven by ultrasonic waves\", Science, 316, 102-105.\n[19] Yang, P., (2005) \"The chemistry and physics of semiconductor\nnanowires\", Mater. Res. Bull., 30, 85-91.\n[20] Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai,\nG., Yang P., (2005) \"General route to vertical ZnO nanowire arrays using\ntextured ZnO seeds\", Nanoletters, 5 (7), 1231-1236.\n[21] Shen, G., Cho, J.H., Yoo, J.K., Yi, G.C., Lee, C.J., (2005) \"Synthesis and\noptical properties of S-doped ZnO nanostructures: nanonails and\nnanowires\", J. Phys. Chem. B, 109, 5491-5496.\n[22] Garti, N., Aserin, A., Tiunova, I., Fanun, M., (2000) \"A DSC study\nofwater behavior inwaterin-oil microemulsions stabilized by sucrose\nesters and butanol\", Colloid Surf. A, 170, 1-18.\n[23] Khiew, P.S., Huang, N.M., Radiman, S., Ahmad, M.S., (2004) \"Synthesis\nof NiS nanoparticles using a sugar-ester nonionicwater-in-oil\nmicroemulsion\", Mater. Lett., 58, 516-521.\n[24] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2005)\n\"Preparation and characterization of ZnS nanoparticles synthesized from\nchitosan laurate micellar solution\", Mater. Lett., 59, 989-993.\n[25] Huang, N.M., Radiman, S., Khiew, P.S., Laggner, P., Kan, C.S., (2004)\n\"In situ templating of PbS nanorods in reverse hexagonal liquid crystal\",\nColloids Surf. A, 247, 55-60.\n[26] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2004) \"Synthesis\nand characterization of copper sulfide nanoparticles in hexagonal phase\nlyotropic liquid crystal\", J. Cryst. Growth, 268, 227-237.\n[27] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2003) \"Studies\non the growth and characterization of CdS and PbS nanoparticles using\nsugar-ester nonionic water-in-oil microemulsion\", J. Cryst. Growth, 254,\n235-243.\n[28] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2004) \"In situ\npolymerization of conducting polyaniline in bicontinuous cubic phase of\nlyotropic liquid crystal\", Colloids Surf. A-Physicochem. Eng. Asp., 247,\n35-40.\n[29] Huang, N.M., Kan, C.S., Khiew, P.S., Radiman, S., (2004) \"Single w/o\nmicroemulsion templating of CdS nanoparticles\", J. Mater. Sci., 39,\n2411-2415.\n[30] Khiew, P.S., Huang, N.M., Radiman, S., Ahmad, M.S., (2004) \"Synthesis\nof NiS nanoparticles using a sugar-ester nonionicwater-in-oil\nmicroemulsion\", Mater. Lett., 58 , 762-767.\n[31] Chiu, W. S., Khiew, P. S., Isa, D., Cloke, M., Radiman, S., Abd-Shukor,\nR., Abdullah, M. H., Huang, N. M. (2008) \"Synthesis of two-dimensional\nZnO nanopellets by pyrolysis of zinc oleate\" Chem. Eng. J., 142(3),\n337-343.\n[32] Hirano, S., Masuya, K., Kuwabara, M., (2004) \"Multi-nucleation-based\nformation of oriented zinc oxide microcrystals and films in aqueous\nsolutions\", J. Phys. Chem. B, 108, 4576-4578.\n[33] Kuo, C.L., Kuo, T.J., Huang, M.H., (2005) \"Hydrothermal synthesis of\nZnO microspheres and hexagonal microrods with sheetlike and platelike\nnanostructures\", J. Phys. Chem. B, 109 (43), 20115-20121.\n[34] Yoshida, T., Tochimoto, M., Schlettwein, D., Wohrle, D., Sugiura, T.,\nMinoura, H., (1999) \"Self-assembly of zinc oxide thin films modified\nwith tetrasulfonated metallophthalocyanines by one-step\nelectrodeposition\", Chem. Mater., 11, 2657-2667.\n[35] Pinna, N., Weiss, K., Kongehl, H.S., Vogel, W., Urban, J., Pileni, M.P.,\n(2001) \"Triangular CdS nanocrystals: synthesis, characterization, and\nstability\", Langmuir, 17, 7982-7987.\n[36] Fons, P., Tampo, H., Kolobov, A.V., Ohkubo, M., Niki, S., Tominaga, J.,\nCarboni, R., Boscherini, F., Friedrich, S., (2006) \"Direct observation of\nnitrogen location in molecular beam epitaxy grown nitrogen-doped ZnO\",\nPhys. Rev. Lett., 96, 045504-045505.\n[37] Chiu, W.S., Radiman, S., Abdullah, M.H., Khiew, P.S., Huang, N.M.,\nAbd-Shukor, R., (2007) \"One pot synthesis of monodisperse Fe3O4\nnanocrystals by pyrolysis reaction of organometallic compound\", Mater.\nChem. Phys., 106, 231-235.\n[38] Peng, X., (2003) \"Mechanisms for the shape-control and shape-evolution\nof colloidal semiconductor nanocrystals\", Adv. Mater., 15 (5), 459-463.\n[39] Yu, W.W., Wang, Y.A., Peng, X., (2003) \"Formation and stability of\nsize-, shape-, and structure-controlled CdTe nanocrystals: ligand effects\non monomers and nanocrystals\", Chem. Mater., 15, 4300-4308.\n[40] Yu, W.W., Peng, X., (2002) \"Formation of high-quality CdS and other\nII-VI semiconductor nanocrystals in noncoordinating solvents: tunable\nreactivity of monomers\", Angew. Chem. Int. Ed., 41 (13), 2368-2371.\n[41] Wang, Z.L., Kong, X.Y., Zuo, J.M., (2003) \"Induced growth of\nasymmetric nanocantilever arrays on polar surfaces-, Phys. Rev. Lett., 91\n(18), 185502-185505.\n[42] Chiu, W.S., Radiman, S., Abd-Shukor, R., Abdullah, M.H., Khiew, P.S.,\n(2008) \"Tunable coercivity of CoFe2O4 nanoparticles via thermal\nannealing treatment\", J. Alloy Comp., 459, 291-297.\n[43] Bovin, J.O., Wallember, R.L., Smith, D., (1985) \"Imaging of atomic\nclouds outside the surfaces of gold crystals by electron microscopy\",\nNature, 317, 47-49.\n[44] Iijima, S., Ichihashi, H., (1986) \"Structural instability of ultrafine particles\nof metals\", Phys. Rev. Lett., 56, 616-619.\n[45] Zhu, H., Averback R.S., (1996) \"Sintering processes of two nanoparticles:\na study by molecular dynamics simulations\", Philos. Magn. Lett., 73,\n27-33.\n[46] Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., Siekkinen, A., Xia, Y.,\n(2006) \"Maneuvering the surface plasmon resonance of silver\nnanostructures through shape-controlled synthesis\", J. Phys. Chem. B,\n110, 15666-15675.\n[47] Kelly, K.L., Corondo, E., Zhao, L.L., Sxhatz, G.C., (2003) \"The optical\nproperties of metal nanoparticles: the influence of size, shape, and\ndielectric environment\", J. Phys. Chem. B, 107, 668-677.\n[48] Joint Committee for Powder Diffraction Society (JCPDS), Powder\nDiffraction Database, pattern: 36-1451.\n[49] Yeh, C.Y., Lu, Z.W., Froyen, S., Zunger, A., (1992) \"Zinc-blende?\nwurtzite polytypism in semiconductors\", Phys. Rev. B, 46, 10086-10097.\n[50] Yeh, C.Y., Wei, S.H., Zunger, A., (1994) \"Relationships between the\nband gaps of the zincblende and wurtzite modifications of\nsemiconductors\", Phys. Rev. B, 50, 2715-2718.\n[51] Serrano, J., Romero, A.H., Manjon, F.J. ', Lauck, R., Cardona, M., Rubio,\nA., (2004) \"Pressure dependence of the lattice dynamics of ZnO: an ab\ninitio approach\", Phys. Rev. B, 69, 094306-094319.\n[52] Shackelford, J.F., Introduction toMaterial Science for Engineers, 6th ed.,\nPearson-Prentice Hall, USA, 2004, p. 106.\n[53] Yeh, C.Y., Wei, S.H., Zunger, A., (1994) \"Relationships between the\nband gaps of the zincblende and wurtzite modifications of\nsemiconductors\", Phys. Rev. B, 50, 2715-2718."]}