122 results on '"Stricker, Sigmar"'
Search Results
102. A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to Brachydactyly Type E
- Author
-
Maass, Philipp G., primary, Wirth, Jutta, additional, Aydin, Atakan, additional, Rump, Andreas, additional, Stricker, Sigmar, additional, Tinschert, Sigrid, additional, Otero, Miguel, additional, Tsuchimochi, Kaneyuki, additional, Goldring, Mary B., additional, Luft, Friedrich C., additional, and Bähring, Sylvia, additional
- Published
- 2009
- Full Text
- View/download PDF
103. Mutations in GDF5 Reveal a Key Residue Mediating BMP Inhibition by NOGGIN
- Author
-
Seemann, Petra, primary, Brehm, Anja, additional, König, Jana, additional, Reissner, Carsten, additional, Stricker, Sigmar, additional, Kuss, Pia, additional, Haupt, Julia, additional, Renninger, Stephanie, additional, Nickel, Joachim, additional, Sebald, Walter, additional, Groppe, Jay C., additional, Plöger, Frank, additional, Pohl, Jens, additional, Schmidt-von Kegler, Mareen, additional, Walther, Maria, additional, Gassner, Ingmar, additional, Rusu, Cristina, additional, Janecke, Andreas R., additional, Dathe, Katarina, additional, and Mundlos, Stefan, additional
- Published
- 2009
- Full Text
- View/download PDF
104. Duplications of noncoding elements 5′ of SOX9 are associated with brachydactyly-anonychia
- Author
-
Kurth, Ingo, primary, Klopocki, Eva, additional, Stricker, Sigmar, additional, van Oosterwijk, Jolieke, additional, Vanek, Sebastian, additional, Altmann, Jens, additional, Santos, Heliosa G, additional, van Harssel, Jeske J T, additional, de Ravel, Thomy, additional, Wilkie, Andrew O M, additional, Gal, Andreas, additional, and Mundlos, Stefan, additional
- Published
- 2009
- Full Text
- View/download PDF
105. The mutation ROR2W749X, linked to human BDB, is a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints and modeling recessive Robinow syndrome
- Author
-
Raz, Regina, primary, Stricker, Sigmar, additional, Gazzerro, Elizabetta, additional, Clor, Julie L., additional, Witte, Florian, additional, Nistala, Harakiran, additional, Zabski, Stefanie, additional, Pereira, Renata C., additional, Stadmeyer, Lisa, additional, Wang, Xiangmin, additional, Gowen, Lori, additional, Sleeman, Mark W., additional, Yancopoulos, George D., additional, Canalis, Ernesto, additional, Mundlos, Stefan, additional, Valenzuela, David M., additional, and Economides, Aris N., additional
- Published
- 2008
- Full Text
- View/download PDF
106. Evolution of a Core Gene Network for Skeletogenesis in Chordates
- Author
-
Hecht, Jochen, primary, Stricker, Sigmar, additional, Wiecha, Ulrike, additional, Stiege, Asita, additional, Panopoulou, Georgia, additional, Podsiadlowski, Lars, additional, Poustka, Albert J., additional, Dieterich, Christoph, additional, Ehrich, Siegfried, additional, Suvorova, Julia, additional, Mundlos, Stefan, additional, and Seitz, Volkhard, additional
- Published
- 2008
- Full Text
- View/download PDF
107. Corrigendum to “Mammalian mitochondrial nitric oxide synthase: Characterization of a novel candidate” [FEBS Lett. 580 (2006) 455-462]
- Author
-
Zemojtel, Tomasz, primary, Kolanczyk, Mateusz, additional, Kossler, Nadine, additional, Stricker, Sigmar, additional, Lurz, Rudi, additional, Mikula, Ivan, additional, Duchniewicz, Marlena, additional, Schuelke, Markus, additional, Ghafourifar, Pedram, additional, Martasek, Pavel, additional, Vingron, Martin, additional, and Mundlos, Stefan, additional
- Published
- 2007
- Full Text
- View/download PDF
108. A comparative analysis of Meox1 and Meox2 in the developing somites and limbs of the chick embryo
- Author
-
Reijntjes, Susan, primary, Stricker, Sigmar, additional, and Mankoo, Baljinder S., additional
- Published
- 2007
- Full Text
- View/download PDF
109. Induction of Macrophage Chemotaxis by Aortic Extracts of the mgR Marfan Mouse Model and a GxxPG-Containing Fibrillin-1 Fragment
- Author
-
Guo, Gao, primary, Booms, Patrick, additional, Halushka, Marc, additional, Dietz, Harry C., additional, Ney, Andreas, additional, Stricker, Sigmar, additional, Hecht, Jochen, additional, Mundlos, Stefan, additional, and Robinson, Peter N., additional
- Published
- 2006
- Full Text
- View/download PDF
110. Cloning and expression pattern of chicken Ror2 and functional characterization of truncating mutations in Brachydactyly type B and Robinow syndrome
- Author
-
Stricker, Sigmar, primary, Verhey Van Wijk, Nicole, additional, Witte, Florian, additional, Brieske, Norbert, additional, Seidel, Kathrin, additional, and Mundlos, Stefan, additional
- Published
- 2006
- Full Text
- View/download PDF
111. Comparative expression pattern of Odd-skipped related genes Osr1 and Osr2 in chick embryonic development
- Author
-
Stricker, Sigmar, primary, Brieske, Norbert, additional, Haupt, Julia, additional, and Mundlos, Stefan, additional
- Published
- 2006
- Full Text
- View/download PDF
112. Mammalian mitochondrial nitric oxide synthase: Characterization of a novel candidate
- Author
-
Zemojtel, Tomasz, primary, Kolanczyk, Mateusz, additional, Kossler, Nadine, additional, Stricker, Sigmar, additional, Lurz, Rudi, additional, Mikula, Ivan, additional, Duchniewicz, Marlena, additional, Schuelke, Markus, additional, Ghafourifar, Pedram, additional, Martasek, Pavel, additional, Vingron, Martin, additional, and Mundlos, Stefan, additional
- Published
- 2005
- Full Text
- View/download PDF
113. Modulation of GDF5/BRI-b signalling through interaction with the tyrosine kinase receptor Ror2
- Author
-
Sieber, Christina, primary, Sammar, Marei, additional, Stricker, Sigmar, additional, Schwabe, Georg C., additional, Hartung, Anke, additional, Pohl, Jens, additional, Minami, Yasuhiro, additional, Sebald, Walter, additional, Mundlos, Stefan, additional, and Knaus, Petra, additional
- Published
- 2005
- Full Text
- View/download PDF
114. Mammalian mitochondrial nitric oxide synthase: Characterization of a novel candidate
- Author
-
Zemojtel, Tomasz, Kolanczyk, Mateusz, Kossler, Nadine, Stricker, Sigmar, Lurz, Rudi, Mikula, Ivan, Duchniewicz, Marlena, Schuelke, Markus, Ghafourifar, Pedram, Martasek, Pavel, Vingron, Martin, and Mundlos, Stefan
- Published
- 2006
- Full Text
- View/download PDF
115. Biallelic variants in ADAMTS15cause a novel form of distal arthrogryposis
- Author
-
Boschann, Felix, Cogulu, Ozgur, Pehlivan, Davut, Balachandran, Saranya, Vallecillo-Garcia, Pedro, Grochowski, Christopher M., Hansmeier, Nils R., Coban Akdemir, Zeynep H., Prada-Medina, Cesar A., Aykut, Ayca, Fischer-Zirnsak, Björn, Badura, Simon, Durmaz, Burak, Ozkinay, Ferda, Hägerling, René, Posey, Jennifer E., Stricker, Sigmar, Gillessen-Kaesbach, Gabriele, Spielmann, Malte, Horn, Denise, Brockmann, Knut, Lupski, James R., Kornak, Uwe, and Schmidt, Julia
- Published
- 2023
- Full Text
- View/download PDF
116. Abalone (Haliotis tuberculata) hemocyanin type 1 (HtH1)
- Author
-
Keller, Henning, primary, Lieb, Bernhard, additional, Altenhein, Benjamin, additional, Gebauer, Dagmar, additional, Richter, Stefanie, additional, Stricker, Sigmar, additional, and Markl, Jürgen, additional
- Published
- 1999
- Full Text
- View/download PDF
117. Molecular mechanism of CHRDL1-mediated X-linked megalocornea in humans and in Xenopus model
- Author
-
Pfirrmann, Thorsten, Emmerich, Denise, Ruokonen, Peter, Quandt, Dagmar, Buchen, Renate, Fischer-Zirnsak, Björn, Hecht, Jochen, Krawitz, Peter, Meyer, Peter, Klopocki, Eva, Stricker, Sigmar, Lausch, Ekkehart, Seliger, Barbara, Hollemann, Thomas, Reinhard, Thomas, Auw-Haedrich, Claudia, Zabel, Bernhard, Hoffmann, Katrin, Villavicencio-Lorini, Pablo, Pfirrmann, Thorsten, Emmerich, Denise, Ruokonen, Peter, Quandt, Dagmar, Buchen, Renate, Fischer-Zirnsak, Björn, Hecht, Jochen, Krawitz, Peter, Meyer, Peter, Klopocki, Eva, Stricker, Sigmar, Lausch, Ekkehart, Seliger, Barbara, Hollemann, Thomas, Reinhard, Thomas, Auw-Haedrich, Claudia, Zabel, Bernhard, Hoffmann, Katrin, and Villavicencio-Lorini, Pablo
- Abstract
Chordin-Like 1 (CHRDL1) mutations cause non-syndromic X-linked megalocornea (XMC) characterized by enlarged anterior eye segments. Mosaic corneal degeneration, presenile cataract and secondary glaucoma are associated with XMC. Beside that CHRDL1 encodes Ventroptin, a secreted bone morphogenetic protein (BMP) antagonist, the molecular mechanism of XMC is not well understood yet. In a family with broad phenotypic variability of XMC, we identified the novel CHRDL1 frameshift mutation c.807_808delTC [p.H270Wfs*22] presumably causing CHRDL1 loss of function. Using Xenopus laevis as model organism, we demonstrate that chrdl1 is specifically expressed in the ocular tissue at late developmental stages. The chrdl1 knockdown directly resembles the human XMC phenotype and confirms CHRDL1 deficiency to cause XMC. Interestingly, secondary to this bmp4 is down-regulated in the Xenopus eyes. Moreover, phospho-SMAD1/5 is altered and BMP receptor 1A is reduced in a XMC patient. Together, we classify these observations as negative-feedback regulation due to the deficient BMP antagonism in XMC. As CHRDL1 is preferentially expressed in the limbal stem cell niche of adult human cornea, we assume that CHRDL1 plays a key role in cornea homeostasis. In conclusion, we provide novel insights into the molecular mechanism of XMC as well as into the specific role of CHRDL1 during cornea organogenesis, among others by the establishment of the first XMC in vivo model. We show that unravelling monogenic cornea disorders like XMC—with presumably disturbed cornea growth and differentiation—contribute to the identification of potential limbal stem cell niche factors that are promising targets for regenerative therapies of corneal injuries
118. The mutation ROR2W749X, linked to human BDB, is a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints and modeling recessive Robinow syndrome.
- Author
-
Raz, Regina, Stricker, Sigmar, Gazzerro, Elizabetta, Clor, Julie L., Witte, Florian, Nistala, Harakiran, Zabski, Stefanie, Pereira, Renata C., Stadmeyer, Lisa, Xiangmin Wang, Gowen, Lori, Sleeman, Mark W., Yancopoulos, George D., Canalis, Ernesto, Mundlos, Stefan, Valenzuela, David M., and Economides, Aris N.
- Subjects
- *
GENETIC mutation , *PHALANGES , *GENETIC disorders , *PHENOTYPES , *LABORATORY mice , *BRACHYDACTYLY - Abstract
Mutations in ROR2 result in a spectrum of genetic disorders in humans that are classified, depending on the nature of the mutation and the clinical phenotype, as either autosomal dominant brachydactyly type B (BDB, MIM 113000) or recessive Robinow syndrome (RRS, MIM 268310). In an attempt to model BDB in mice, the mutation W749X was engineered into the mouse Ror2 gene. In contrast to the human situation, mice heterozygous for Ror2W749FLAG are normal and do not develop brachydactyly, whereas homozygous mice exhibit features resembling RRS. Furthermore, both Ror2W749FLAG/W749FLAG and a previously engineered mutant, Ror2TMlacZ/TMlacZ, lack the P2/P3 joint. Absence of Gdf5 expression at the corresponding interzone suggests that the defect is in specification of the joint. As this phenotype is absent in mice lacking the entire Ror2 gene, it appears that specification of the P2/P3 joint is affected by ROR2 activity. Finally, Ror2W749FLAG/W749FLAG mice survive to adulthood and exhibit phenotypes (altered body composition, reduced male fertility) not observed in Ror2 knockout mice, presumably due to the perinatal lethality of the latter. Therefore, Ror2W749FLAG/W749FLAG mice represent a postnatal model for RRS, provide insight into the mechanism of joint specification, and uncover novel roles of Ror2 in the mouse. [ABSTRACT FROM AUTHOR]
- Published
- 2008
119. Posterior Neural Plate-Derived Cells Establish Trunk and Tail Somites in the Axolotl (Ambystoma mexicanum)
- Author
-
Pawolski, Verena, Dahmann, Christian, Funk, Richard, Stricker, Sigmar, and Technische Universität Dresden
- Subjects
ddc:570 ,posterior elongation, tail formation, morphology, mesoderm, axolotl ,hintere Streckung, Schwanzbildung, Morphologie, Mesoderm, Axolotl - Abstract
The vertebrate tail is unique for each species and fulfils a broad spectrum of functions. In the axolotl (Ambystoma mexicanum), a tailed amphibian, the tail constitutes one-third of the full body length and is necessary for swimming. Despite its size, most of the tail's tissues are derived from the posterior neural plate of the neurula. Although giving rise to neuronal structures of the central nervous system along most of its length, the most posterior part of the neural plate develops preponderantly into presomitic mesoderm (PSM) which forms muscle, bone and cartilage of the tail and posterior trunk. During development, the posterior neural plate reverses its orientation during an anterior turn movement (Taniguchi et al., 2017). Cells of the most posterior plate region become now localised in an anterior position while previously more anterior neural plate cells land at a more posterior site. Simultaneously, the axial neural tube and notochord extend themselves posteriorly. The PSM, developing bilaterally to the central axis, is integrated into posterior tail expansion while forming new somites at its anterior end. It is still elusive which morphological changes the PSM undergoes to facilitate tail formation and posterior elongation of the embryo. Furthermore, it remains enigmatic in what way PSM cells change their shape, orientation, migration behaviour and distribution to meet the requirements needed for adjusting PSM and somite morphology. With homotopic tissue transplantations of posterior neural plate cells from a gfp-expressing donor to a white (d/d) recipient, enabled specific labelling of all mesodermal cells of the tail. Otherwise, mesodermal cells of the trunk and tail can not be distinguished, neither genetically nor morphologically. With this cell labelling approach, the entire tail mesoderm could be imaged in toto. Thus, measurements of the morphological changes of the PSM and cell tracking in 3D was possible during development. With this technique, posterior neural plate cells could be shown to form parts of the posterior neural tube, the entire posterior PSM and the somites of the tail. During this course of development, the PSM becomes longer but does not increase its volume. Only when forming the somites, an increase in volume could be measured in the mesoderm. Single-cell labelling showed an anterior shift of cell movement led by medial PSM cells and followed by more laterally located cells. The anterior displacement happens simultaneously to the posterior elongation of the embryo. A hypothetical push by newly generated cells at the tail tip could be ruled out. Mitotic cells were evenly distributed in all tissues of the tail with a low proliferation rate. The morphological changes and anterior relocations of the tail mesoderm could, therefore, mainly be explained by cell migration. Therefore, further analyses focussed on cell migration, particularly on cellular characteristics displayed during migration such as shape, orientation, volume, distribution and filopodia organisation to obtain more profound information about how PSM cells migrate and contribute to somite formation. The net movement of tail elongation is directed posteriorly regardless of anteriorly relocating PSM cells. That is only feasible if a lateral expansion of the PSM by laterally migrating PSM cells is counteracted. There have been no studies on the lateral boundary so far. In the axolotl, the PSM is covered laterally by a two-layered epidermis and a fibronectin-rich extracellular matrix. After removing the tail epidermis, operated embryos showed missing or malformed tails, especially with lateral and dorsal curvatures and shortenings. Tail mesoderm examined in these cases showed an increased PSM volume and a lateral expansion of the tissue. A nearly normal tail developed when, after removing the epidermis, the embryos developed in 1% agarose supplemented with fibronectin. In contrast, a simple covering of the PSM with a nitrocellulose membrane, incubation in the softer methylcellulose or in agarose without fibronectin did not rescue tail formation. The lateral pressure on the PSM and a fibronectin-rich extracellular matrix seem necessary to preserve the tissue architecture of the PSM during tail formation. This study unravels the behaviour of individual PSM cells during their morphogenesis from single cells in the posterior plate of the neurula until somite formation in the tail bud. Overall, with specific labelling of tail mesodermal cells, their contribution to PSM morphology could be elucidated, and a more detailed model of tail elongation could be proposed: The posterior expansion of the neural tube and notochord pushes the posterior neural plate tissue posteriorly and squeezes the cells into an elongated mediolaterally oriented form. Labelling experiments of small individual cell groups showed that the ventral posteriormost cells are the first to escape this pressure by relocating anteriorly. Then, more anteriorly located cells follow, as well as dorsally located cells. These movements explain the anterior turn. Thereby, mesodermal cells start to migrate randomly, become elongated and change their orientation from mediolateral to anterior-posterior. Random cell migration leads to homogeneous cell mixing, which results in an aligned uniform tissue of trunk and tail PSM. The lateral constriction by the epidermis channels the undirected migration movements in an anterior direction. In this way, cells are directed towards the site of somite formation, the PSM narrows, and the embryo elongates posteriorly. This extension model includes the individual cell behaviour, which on the whole shapes PSM morphology. The analysed dynamic morphological changes of the PSM can be linked to the developmental processes of the tail and the posterior elongation of the axis.:1 Introduction 1.1 Embryonic tail formation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Mechanism of tail formation . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Molecular determination of cell populations in the tail bud . . . . . 5 1.2 Axial elongation of the vertebrate body plan . . . . . . . . . . . . . . . . . 8 1.2.1 Anterior body elongation (elongation of the trunk) . . . . . . . . . 8 1.2.2 Posterior body elongation (tail elongation) . . . . . . . . . . . . . . 9 1.3 Studying tissue morphology during development . . . . . . . . . . . . 11 1.4 Aim of the project . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 12 2 Materials 2.1 Chemicals and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Antibodies and dyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Techniqual equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Methods 3.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Breeding of axolotls and embryo collection . . . . . . . . . . . . 19 3.1.2 Injections with the vital dye DiI . . . . . . . . . . . . . . . . . . . 19 3.1.3 Tissue transplantation techniques . . . . . . . . . . . . . . . . . . . 19 3.2 Immunohistochemical staining . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Vibratome sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Whole-mount staining . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Optical tissue clearing protocols . . . . . . . . . . . . . . . . . . 21 3.3.1 Ethyl cinnamate based optical tissue clearing protocol . . . . . . . 21 3.3.2 SeeDB optical clearing protocol . . . . . . . . . . . . . . . . . . . . 22 3.4 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.1 3D image generation and processing . . . . . . . . . . .. . . . . . 22 3.4.2 Length measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.3 Manual segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.4 Automatic segmentation . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Determination of cellular parameters . . . . . . . . . . . . . . .. . . . . 25 3.5.1 Cell shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.2 Cell and tissue volume . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.3 Cellular distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.4 Closest neighbour analysis . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.5 Cell orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5.6 Length and orientation of filopodia . . . . . . . . . . . . . . . . . . 31 3.5.7 Distance of cells to a plane . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.8 Mitotic rate and spindle orientation . . . . . . . . . . . . . . . . . 32 4 Results 4.1 The presomitic mesoderm is associated with axial elongation. . . . . . 33 4.1.1 Elongation of the body axis . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 Contribution of different tissues . . . . . . . . . . . . . . . . . . . . 34 4.1.3 Differential contribution of mesoderm and epidermis . . . . . . . . . 40 4.1.4 Dual potential of mesodermal progenitors . . . . . . . . . . . . . . . 42 4.1.5 Mesodermal tissue expansion . . . . . . . . . . . . . . . . . . . . . 46 4.2 Cellular behaviour influences mesodermal morphology . . . . . . . . . 50 4.2.1 Cell division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2 Positional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 Cellular characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 59 Cell shape changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Change of cell orientation . . . . . . . . . . . . . . . . . . . . . . . 61 Orientation of filopodia . . . . . . . . . . . . . . . . . . . . . . . . . 63 Cell distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 The epidermis fascilitates mesodermal tissue integrity . . . . . . .. . . . 67 4.3.1 Mesodermal tissue integrity . . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 Malformed tails after epidermis removal . . . . . . . . . . . . . . . 70 4.3.3 Alteration in mesodermal tissue dimensions . . . . . . . . . . . . . 73 4.3.4 Alteration of cell density after epidermis removal . . . . . . . . . . 77 4.3.5 Rescue of tail formation . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Discussion 5.1 Cell migration of the presomitic mesodermal cells . . . . . . . . .. . . . 85 5.1.1 Continuity of gastrulation movements . . . . . . . . . . . . . . . . . 85 5.1.2 Directed migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.3 Random cell migration . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.4 Lateral mechanical constriction . . . . . . . . . . . . . . . . . . . . 90 5.2 Non-volumetric growth of the presomitic mesoderm . . . . . . . . . . . . . 91 5.3 Models of tail presomitic mesoderm formation . . . . . . . . . . . . . . . . 93 Der Schwanz der Wirbeltiere ist bei jeder Art einzigartig und erfüllt ein breites Spektrum an Funktionen. Beim Salamander Axolotl (Ambystoma mexicanum), macht der Schwanz ein Drittel der gesamten Körperlänge aus und ist zum Schwimmen notwendig. Trotz seiner Größe stammen die meisten Gewebe des Schwanzes von der posterioren Neuralplatte der Neurula ab. Obwohl der größte Teil der Neuralplatte neuronale Strukturen des Zentralnervensystems hervorbringt, entwickelt sich der posteriore Teil der Neuralplatte überwiegend zu präsomitischem Mesoderm (PSM), das Muskeln, Knochen und Knorpel des Schwanzes und des hinteren Rumpfes bildet. Während der Entwicklung kehrt die posteriore Neuralplatte ihre Orientierung in einer anterioren Drehbewegung um (Taniguchi et al., 2017). Zellen der hintersten Plattenregion werden in eine anteriore Position verschoben, während zuvor anteriorere Neuralplattenzellen an einer posterioren Stelle landen. Gleichzeitig verlängert sich das axiale Neuralrohr und das Notochord nach posterior. Das PSM, das sich bilateral zur Zentralachse entwickelt, ist im Prozess der Schwanzverlängerung involviert, während es gleichzeitig an seinem vorderen Ende neue Somiten bildet. Es ist immer noch unklar, welche morphologischen Veränderungen das PSM durchläuft, um die Schwanzbildung und die posteriore Ausdehnung des Embryos zu ermöglichen. Darüber hinaus ist unbekannt, auf welche Weise PSM-Zellen ihre Form, Orientierung, ihr Migrationsverhalten und ihre Verteilung ändern, die für eine Veränderung der PSM- und Somitenmorphologie erforderlich sind. Mit homotopen Gewebetransplantationen von posterioren Neuralplattenzellen von einem gfp-exprimierenden Spender auf einen weißen (d/d) Empfänger, konnte eine spezifische Markierung aller mesodermalen Zellen des Schwanzes erreicht werden. Andernfalls können mesodermale Zellen des Rumpfes und des Schwanzes weder genetisch noch morphologisch unterschieden werden. Mit diesem Zellmarkierungsansatz konnte das gesamte Schwanzmesoderm in toto abgebildet werden. So waren Messungen der morphologischen Veränderungen des PSM und Zellverfolgung in 3D während der Entwicklung möglich. Mit dieser Technik konnte gezeigt werden, dass die Zellen der posterioren Neuralplatte Teile des posterioren Neuralrohrs, das gesamte posteriore PSM und die Somiten des Schwanzes bilden. Dabei wird das PSM länger, ohne sein Volumen zu vergrößern. Erst während der Bildung von Somiten wurde eine Volumenzunahme gemessen Einzelzellmarkierungen zeigten eine anteriore Verschiebung der Zellen, angeführt von medialen PSM-Zellen und gefolgt von lateral gelegenen Zellen. Diese anteriore Verschiebung geschieht gleichzeitig mit der posterioren Streckung des Embryos. Ein hypothetischer Schub durch neugebildete Zellen an der Schwanzspitze konnte ausgeschlossen werden. Mitotischen Zellen waren gleichmäßig in allen Geweben des Schwanzes verteilt und wiesen eine geringe Proliferationsrate auf. Die morphologischen Veränderungen und anterioren Verlagerungen des Schwanzmesoderms können daher hauptsächlich durch Zellmigration erklärt werden. Die Analysen konzentrierten sich daher auf die Zellmigration, insbesondere auf die zellulären Charakteristika, die sich während der Migration zeigen, wie z.B. Form, Orientierung, Volumen, Verteilung und Filopodienorganisation. So konnten neue Informationen darüber gewonnen werden, wie PSM-Zellen wandern und zur Somitenbildung beitragen. Die Nettobewegung der Schwanzverlängerung ist, unabhängig von nach anterior wandernden PSM-Zellen, nach posterior gerichtet. Das ist nur möglich, wenn einer lateralen Ausdehnung des PSM durch ungerichtet migrierenden Zellen entgegengewirkt wird. Über die Rolle einer laterale Begrenzung bei diesem Prozess gibt es bisher keine Untersuchungen. Beim Axolotl ist das PSM seitlich von einer zweischichtigen Epidermis und einer Fibronektin-reichen extrazellulären Matrix bedeckt. Nach Entfernung der Schwanzepidermis zeigten operierte Embryonen fehlende oder missgebildete Schwänze, insbesondere mit einer lateralen und dorsalen Krümmung und einer Verkürzung. Untersuchungen des Schwanzmesoderms zeigten ein erhöhtes PSM-Volumen und eine laterale Ausdehnung des Gewebes. Ein nahezu normaler Schwanz entwickelte sich, wenn die Embryonen nach Entfernung der Epidermis mit 1% Agarose, ergänzt mit Fibronektin, bedeckt wurden. Im Gegensatz dazu konnte eine einfache Abdeckung des PSM mit einer Nitrozellulosemembran, die Inkubation in der weicheren Methylzellulose oder in Agarose ohne Fibronektin die Schwanzbildung nicht normalisieren. Der seitliche Druck auf das PSM und eine Fibronektin-reiche extrazelluläre Matrix scheinen notwendig zu sein, um die Gewebearchitektur des PSM während der Schwanzbildung zu erhalten. Diese Studie zeigt das Verhalten einzelner PSM-Zellen während der Morphogenese der hinteren Neuralplatte bis zur Somitenbildung. Insgesamt konnte durch die spezifische Markierung von mesodermalen Zellen des Schwanzes deren Beitrag zur PSM-Morphologie aufgeklärt und ein detaillierteres Modell der Schwanzverlängerung vorgeschlagen werden: Die posteriore Ausdehnung des Neuralrohrs und des Notochords schiebt das posteriore Neuralplattengewebe nach hinten und quetscht die Zellen in eine verlängerte, mediolateral orientierte Form. Markierungsexperimente einzelner Zellgruppen zeigten, dass die ventralen, posterior gelegenen Zellen diesem Druck als erste entkommen, indem sie sich nach anterior verschieben. Ihnen folgen weiter anterior gelegene Zellen sowie dorsal gelegene Zellen. Diese Bewegungen erklären die anteriore Drehung. Dabei beginnen mesodermale Zellen ungerichtet zu wandern, verlängern sich und ändern ihre Orientierung von mediolateral nach anterior-posterior. Die ungerichtete Zellwanderung führt zu einer homogenen Zelldurchmischung, so dass zusammen mit dem PSM des Rumpfes ein einheitliches Gewebe gebildet wird. Die laterale Begrenzung durch die Epidermis kanalisiert die ungerichteten Migrationsbewegungen in anteriore Richtung. Auf diese Weise werden die Zellen in Richtung der Somitenbildungsstelle gelenkt, das PSM verengt sich, und der Embryo streckt sich nach hinten. Dieses Ausdehnungsmodell beinhaltet das individuelle Zellverhalten, das insgesamt die Morphologie des PSM prägt. Die analysierten dynamischen morphologischen Veränderungen des PSM können mit Schwanzentwicklungsprozessen und der posterioren Elongation der Achse in Verbindung gebracht werden.:1 Introduction 1.1 Embryonic tail formation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Mechanism of tail formation . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Molecular determination of cell populations in the tail bud . . . . . 5 1.2 Axial elongation of the vertebrate body plan . . . . . . . . . . . . . . . . . 8 1.2.1 Anterior body elongation (elongation of the trunk) . . . . . . . . . 8 1.2.2 Posterior body elongation (tail elongation) . . . . . . . . . . . . . . 9 1.3 Studying tissue morphology during development . . . . . . . . . . . . 11 1.4 Aim of the project . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 12 2 Materials 2.1 Chemicals and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Antibodies and dyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Techniqual equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Methods 3.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Breeding of axolotls and embryo collection . . . . . . . . . . . . 19 3.1.2 Injections with the vital dye DiI . . . . . . . . . . . . . . . . . . . 19 3.1.3 Tissue transplantation techniques . . . . . . . . . . . . . . . . . . . 19 3.2 Immunohistochemical staining . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Vibratome sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Whole-mount staining . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Optical tissue clearing protocols . . . . . . . . . . . . . . . . . . 21 3.3.1 Ethyl cinnamate based optical tissue clearing protocol . . . . . . . 21 3.3.2 SeeDB optical clearing protocol . . . . . . . . . . . . . . . . . . . . 22 3.4 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.1 3D image generation and processing . . . . . . . . . . .. . . . . . 22 3.4.2 Length measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.3 Manual segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.4 Automatic segmentation . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Determination of cellular parameters . . . . . . . . . . . . . . .. . . . . 25 3.5.1 Cell shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.2 Cell and tissue volume . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.3 Cellular distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.4 Closest neighbour analysis . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.5 Cell orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5.6 Length and orientation of filopodia . . . . . . . . . . . . . . . . . . 31 3.5.7 Distance of cells to a plane . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.8 Mitotic rate and spindle orientation . . . . . . . . . . . . . . . . . 32 4 Results 4.1 The presomitic mesoderm is associated with axial elongation. . . . . . 33 4.1.1 Elongation of the body axis . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 Contribution of different tissues . . . . . . . . . . . . . . . . . . . . 34 4.1.3 Differential contribution of mesoderm and epidermis . . . . . . . . . 40 4.1.4 Dual potential of mesodermal progenitors . . . . . . . . . . . . . . . 42 4.1.5 Mesodermal tissue expansion . . . . . . . . . . . . . . . . . . . . . 46 4.2 Cellular behaviour influences mesodermal morphology . . . . . . . . . 50 4.2.1 Cell division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2 Positional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 Cellular characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 59 Cell shape changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Change of cell orientation . . . . . . . . . . . . . . . . . . . . . . . 61 Orientation of filopodia . . . . . . . . . . . . . . . . . . . . . . . . . 63 Cell distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 The epidermis fascilitates mesodermal tissue integrity . . . . . . .. . . . 67 4.3.1 Mesodermal tissue integrity . . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 Malformed tails after epidermis removal . . . . . . . . . . . . . . . 70 4.3.3 Alteration in mesodermal tissue dimensions . . . . . . . . . . . . . 73 4.3.4 Alteration of cell density after epidermis removal . . . . . . . . . . 77 4.3.5 Rescue of tail formation . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Discussion 5.1 Cell migration of the presomitic mesodermal cells . . . . . . . . .. . . . 85 5.1.1 Continuity of gastrulation movements . . . . . . . . . . . . . . . . . 85 5.1.2 Directed migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.3 Random cell migration . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.4 Lateral mechanical constriction . . . . . . . . . . . . . . . . . . . . 90 5.2 Non-volumetric growth of the presomitic mesoderm . . . . . . . . . . . . . 91 5.3 Models of tail presomitic mesoderm formation . . . . . . . . . . . . . . . . 93
- Published
- 2021
120. The role of the tumour suppressor Nf1 in growth and metabolism of skeletal muscle cells
- Author
-
Franke, Julia, Stricker, Sigmar, Technische Universität Berlin, Fakultät III - Prozesswissenschaften, and Lauster, Roland
- Subjects
congenital, hereditary, and neonatal diseases and abnormalities ,ddc:570 ,nervous system diseases - Abstract
Das Ziel der vorliegenden Arbeit war es, die Rolle des Proteins Neurofibromin in skelettalen Muskelzellen zu beschreiben. Ein Verlust von Neurofibromin ist die Ursache von Neurofibromatose I (NF1) - eine der häufigsten Erbkrankheiten weltweit. Die bekanntesten Krankheitssymptome sind Tumore neuroektodermalen Ursprungs. Eine große Zahl der Patienten leidet darüber hinaus an schweren Defekten des muskuloskelettalen Systems. Diese Defekte treten häufig bereits im Kindesalter auf und führen zu Knochendeformationen, einer verminderten Knochendichte und einer erhöhten Prädisposition für Frakturen. Außerdem erhöht eine Reduktion von Muskelkraft und Koordinationsfähigkeit das Risiko für Stürze und Verletzungen und beeinträchtigt die Patienten zusätzlich. Neurofibromatose I wird durch Mutationen im NF1-Gen hervorgerufen. Dieses Gen kodiert für das RAS-GTPase-aktivierende Protein Neurofibromin, welches als Tumorsupressor und Histogenese-Kontrollgen beschrieben wurde. Tumor- und Knochenentwicklung stehen im Mittelpunkt der NF1-Forschung. Die Ursachen verringerter Muskelleistungen wurden bisher allerdings nicht untersucht. In Anbetracht der skelettalen Missbildungen stellt sich jedoch die Frage, ob nicht skelettale und muskuläre Defekte zusammen das klinische Bild hervorrufen. Die vorliegende Arbeit widmet sich der Erforschung des NF1-Pathomechanismus in Muskelzellen. Dafür wurden drei Mausmodelle mithilfe einer konditionellen Knockout-Technik erzeugt. Die Technik erlaubte eine Muskelzell-spezifische Deletion des Nf1-Gens zu ausgewählten Zeitpunkten der Embryonalentwicklung. Im ersten Model (Nf1Lbx1) wurde Nf1 in Muskel-Vorläuferzellen ausgeschaltet. Im zweiten Model (Nf1Myf5) sind Myoblasten und im dritten Model (Nf1HSA) Myotuben vom Nf1-Knockout betroffen. Alle Modelle wurden mithilfe von histologischen, immunochemischen, molekularbiologischen und biochemischen Methoden hinsichtlich der vier Phasen der Muskelentwicklung - embryonale, fetale, perinatale und adulte Myogenese - untersucht. Es konnte gezeigt werden, dass ein Verlust von Nf1 ein reduziertes Muskelfaser-Wachstums hervorruft. Diese Reduktion konnte erstmalig im fetalen Stadium der Myogenese bei Tag E18.5 detektiert werden. Sie wird durch den Nf1-Verlust in Muskel-Vorläuferzellen beziehungsweise Myoblasten, nicht jedoch in Myotuben, ausgelöst. Die Größenreduktion der Muskelfasern geht hauptsächlich auf eine Verminderung der myonukleären Domäne (zellulärer Proteingehalt pro Zellkern) zurück. Der Verlust von Nf1 löst zudem einen transienten Anstieg der Zahl Pax7+ Vorläuferzellen im fetalen Stadium aus. Nach der Geburt nimmt deren Zahl wiederum verstärkt ab, wahrscheinlich durch eine Erschöpfung des Zellpools. Dadurch verringert sich die Anzahl sogenannter Satellitenzellen, residenter Muskelstammzellen. Es wurde ebenfalls gezeigt, dass Nf1 maßgeblich an der Regulation von Muskelfaser-Identität und metabolischen Parametern beteiligt ist. Die Untersuchung von Nf1- und Ras-assoziierten Signalwegen ergab eine erhöhte Aktivierung der Akt-, Mek/Erk- und Nfat-Signalkaskaden durch einen Nf1-Knockout. Eine Reihe von transkriptionellen Zielgenen dieser Signalwege konnte als möglicher Auslöser der beschriebenen Wachtums- und Metabolismusdefekte identifiziert werden. Die Ergebnisse zeigen, dass Nf1 wichtige Funktionen in skeletalen Muskelzellen übernimmt, dies schließt die Differenzierung von Pax7+ Vorläuferzellen, das Faserwachstum und die Regulation metabolischer Prozesse ein. Die hier etablierten Mausmodelle rekapitulieren Aspekte des Neurofibromatose I-Krankheitsbildes. Sie sind daher geeignete Forschungsobjekte für weitere Studien zum Pathomechanismus sowie für die Durchführung therapeutischer Tests. The aim of this work was to describe the role of the protein neurofibromin in skeletal muscle cells. Loss of neurofibromin function causes neurofibromatosis I (NF1) - one of the most common genetic disorders worldwide. Although the most prominent symptoms of NF1 are tumours of neuroectodermal origin, a high fraction of patients suffers from pathological changes of the musculoskeletal system. These symptoms mostly appear in early childhood and include bone malformations, decreased bone density and a high predisposition to fractures. An additional reduction of muscular strength and coordination skills increases the risk of falls and injuries which altogether contributes to tremendous restrictions of patients' health and life quality. Neurofibromatosis I is caused by mutations in the gene NF1. The gene encodes for the RAS GTPase activating protein neurofibromin, which is described as a tumour suppressor and histogenesis control gene. Although considerable research was performed on tumourgenesis and skeletogenesis in NF1 patients, the aspect of putative muscular defects has not been investigated yet. However, in respect to skeletal malformations it seems most likely that a combination of skeletal and muscular defects causes the clinical picture. Therefore, basic pathomechanisms of NF1 in muscle cells were studied in this work. For this purpose, three mouse models were generated using a conditional knockout approach allowing a muscle cell specific Nf1 knockout. In each model Nf1 was deleted in a specific stage of embryonic development. In the first model (Nf1Lbx1) Nf1 was deleted in muscle precursor cells. In the second model (Nf1Myf5) myoblasts were targeted and in the third model (Nf1HSA) Nf1 was deleted in myotubes. The mice were analysed using histological, immunochemical, molecular biological and biochemical methods. Thereby, the four phases of muscle development were analysed: embryonic, fetal, perinatal and adult myogenesis. It could be shown that loss of Nf1 causes a decrease in muscle fibre growth. This decrease was first detected in the fetal phase of myogenesis at embryonic day E18.5. It was detected only if Nf1 was deleted in precursor cells or myoblasts, but not if deleted in myotubes. The fibre size reduction was mainly due to reduction of the myonuclear domain (cellular protein content per nucleus). Furthermore, it was detected that the number of Pax7+ progenitor cells showed a transient increase in the fetal stage upon deletion of Nf1. However, postnatally the Nf1 deletion resulted in strong depletion of Pax7+ progenitor cell numbers. That leads to a diminished cell pool of muscle stem cells, so called satellite cells, which are responsible for muscle regeneration. Also, it seems that Nf1 has a role in fibre type determination and regulation of metabolic parameters as loss of Nf1 caused a shift towards oxidative fibre characteristics. Investigations of molecular pathways in muscle tissue showed that deletion of Nf1 leads to significant over-activation of the Ras downstream components Erk/Mek, Akt and Nfat as well as transcriptional upregulation of their downstream targets which might be responsible for the detected growth and metabolism defects. The results show that Nf1 has several roles in skeletal muscle cells, including differentiation of Pax7+ precursor cells, fibre growth and regulation of metabolic characteristics. The described mouse models recapitulated aspects of neurofibromatosis I associated muscle defects like the decrease of muscle size. Therefore, they are suitable for further studies and therapy testing in the process of neurofibromatosis I research.
- Published
- 2015
121. A dual transcript-discovery approach to improve the delimitation of gene features from RNA-seq data in the chicken model.
- Author
-
Orgeur M, Martens M, Börno ST, Timmermann B, Duprez D, and Stricker S
- Abstract
The sequence of the chicken genome, like several other draft genome sequences, is presently not fully covered. Gaps, contigs assigned with low confidence and uncharacterized chromosomes result in gene fragmentation and imprecise gene annotation. Transcript abundance estimation from RNA sequencing (RNA-seq) data relies on read quality, library complexity and expression normalization. In addition, the quality of the genome sequence used to map sequencing reads, and the gene annotation that defines gene features, must also be taken into account. A partially covered genome sequence causes the loss of sequencing reads from the mapping step, while an inaccurate definition of gene features induces imprecise read counts from the assignment step. Both steps can significantly bias interpretation of RNA-seq data. Here, we describe a dual transcript-discovery approach combining a genome-guided gene prediction and a de novo transcriptome assembly. This dual approach enabled us to increase the assignment rate of RNA-seq data by nearly 20% as compared to when using only the chicken reference annotation, contributing therefore to a more accurate estimation of transcript abundance. More generally, this strategy could be applied to any organism with partial genome sequence and/or lacking a manually-curated reference annotation in order to improve the accuracy of gene expression studies., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2018. Published by The Company of Biologists Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
122. Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2.
- Author
-
Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Süring K, Majewski F, Tinschert S, Grzeschik KH, Müller D, Knaus P, Nürnberg P, and Mundlos S
- Subjects
- Amino Acid Sequence, Animals, Base Sequence, Bone Morphogenetic Protein Receptors, Type I, Cartilage abnormalities, Chick Embryo, Chondrogenesis genetics, Chromosome Mapping, Chromosomes, Human, Pair 4 genetics, DNA, Complementary genetics, Female, Genes, Dominant, Humans, Limb Deformities, Congenital metabolism, Limb Deformities, Congenital pathology, Male, Molecular Sequence Data, Pedigree, Phenotype, Protein Serine-Threonine Kinases metabolism, Receptors, Growth Factor metabolism, Sequence Homology, Amino Acid, Limb Deformities, Congenital genetics, Mutation, Missense, Protein Serine-Threonine Kinases genetics, Receptors, Growth Factor genetics
- Abstract
Brachydactyly (BD) type A2 is an autosomal dominant hand malformation characterized by shortening and lateral deviation of the index fingers and, to a variable degree, shortening and deviation of the first and second toes. We performed linkage analysis in two unrelated German families and mapped a locus for BD type A2 to 4q21-q25. This interval includes the gene bone morphogenetic protein receptor 1B (BMPR1B), a type I transmembrane serinethreonine kinase. In one family, we identified a T599 --> A mutation changing an isoleucine into a lysine residue (I200K) within the glycine/serine (GS) domain of BMPR1B, a region involved in phosphorylation of the receptor. In the other family we identified a C1456 --> T mutation leading to an arginine-to-tryptophan amino acid change (R486W) in a highly conserved region C-terminal of the BMPR1B kinase domain. An in vitro kinase assay showed that the I200K mutation is kinase-deficient, whereas the R486W mutation has normal kinase activity, indicating a different pathogenic mechanism. Functional analyses with a micromass culture system revealed a strong inhibition of chondrogenesis by both mutant receptors. Overexpression of mutant chBmpR1b in vivo in chick embryos by using a retroviral system resulted either in a BD phenotype with shortening and/or missing phalanges similar to the human phenotype or in severe hypoplasia of the entire limb. These findings imply that both mutations identified in human BMPR1B affect cartilage formation in a dominant-negative manner.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.