247 results on '"Shlegel, V"'
Search Results
202. CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification
- Author
-
Wang, G., Chang, C. L., Yefremenko, V., Ding, J., Novosad, V., Bucci, C., Canonica, L., Gorla, P., Nagorny, S. S., Pagliarone, C., Pattavina, L., Pirro, S., Schaeffner, K., Feintzeig, J., Fujikawa, B. K., Mei, Y., Norman, E. B., Wang, B. S., Banks, T. I., Kolomensky, Yu G., Hennings-Yeomans, R., O Donnell, T. M., Singh, V., Moggi, N., Zucchelli, S., Gladstone, L., Winslow, L., Artusa, D. R., Avignone, F. T., Creswick, R. J., Farach, H. A., Rosenfeld, C., Wilson, J., Lanfranchi, J., Schonert, S., Willers, M., Di Domizio, S., Pallavicini, M., Calvo, M., Monfardini, A., Enss, C., Fleischmann, A., Gastaldo, L., Boiko, R. S., Danevich, F. A., Kobychev, V. V., Poda, D. V., Polischuk, O. G., Tretyak, V. I., Keppel, G., Palmieri, V., Kazkaz, K., Sangiorgio, S., Scielzo, N., Hickerson, K., Huang, H., Biassoni, M., Brofferio, C., Capelli, S., Chiesa, D., Clemenza, M., Cremonesi, O., Faverzani, M., Ferri, E., Fiorini, E., Giachero, A., Gironi, L., Gotti, C., Nucciotti, A., Pavan, M., Pessina, G., Previtali, E., Rusconi, C., Sisti, M., Terranova, F., Barabash, A. S., Konovalov, S. I., Nogovizin, V. V., Yumatov, V. I., Petricca, F., Probst, F., Seidel, W., Han, K., Heeger, K. M., Maruyama, R., Lim, K., Ivannikova, N. V., Kasimkin, P. V., Makarov, E. P., Moskovskih, V. A., Shlegel, V. N., Vasiliev, Ya V., Zdankov, V. N., Kokh, A. E., Shevchenko, V. S., Bekker, T. B., Giuliani, A., Marcillac, P., Marnieros, S., Olivieri, E., Taffarello, L., Velazquez, M., Bellini, F., Cardani, L., Nicola Casali, Colantoni, I., Cosmelli, C., Cruciani, A., Dafinei, I., Ferroni, F., Morganti, S., Mosteiro, P. J., Orio, F., Tomei, C., Pettinacci, V., Vignati, M., Castellano, M. G., Nones, C., Gutierrez, T. D., Cao, X. G., Fang, D. Q., Ma, Y. G., Wang, H. W., Deng, X. G., Cazes, A., Jesus, M., Margesin, B., Garcia, E., Martinez, M., Puimedon, J., and Sarsa, M. L.
203. First results of the experiment to search for 2β decay of 106cd with the help of106CdWO4crystal scintillators
- Author
-
Belli, P., Bernabei, R., Boiko, R. S., Brudanin, V. B., Cappella, F., Caracciolo, V., Cerulli, R., Chernyak, D. M., Fedor Danevich, D Angelo, S., Dossovitskiy, A. E., Galashov, E. N., Incicchitti, A., Kobychev, V. V., Nagorny, S. S., Nozzoli, F., Kropivyansky, B. N., Kudovbenko, V. M., Mikhlin, A. L., Nikolaiko, A. S., Poda, D. V., Podviyanuk, R. B., Polischuk, O. G., Prosperi, D., Shlegel, V. N., Stenin, Yu G., Suhonen, J., Tretyak, V. I., and Vasiliev, Ya V.
204. Radiopurity of ZnWO4 Crystal Scintillators
- Author
-
Belli, P., Bernabei, R., Fabio Cappella, Cerulli, R., Danevich, F. A., Dubovik, A. M., D Angelo, S., Galashov, E. N., Grinyov, B. V., Incicchitti, A., Kobychev, V. V., Nagornaya, L. L., Nisi, S., Nozzoli, F., Poda, D. V., Podviyanuk, R. B., Prosperi, D., Shlegel, V. N., Tretyak, V. I., Vasiliev, Y. V., and Vostretsov, Y. Y.
- Subjects
Settore FIS/01 - Fisica Sperimentale ,Settore FIS/04 - Fisica Nucleare e Subnucleare
205. First results of the experiment to search for double beta decay of 116Cd with the help of enriched 116CdWO4 crystal scintillators
- Author
-
Barabash, A. S., Belli, P., Rita Bernabei, Cappella, F., Caracciolo, V., Castellano, S., Cerulli, R., Chernyak, D. M., Danevich, F. A., Galashov, E. N., Incicchitti, A., Kobychev, V. V., Konovalov, S. I., Laubenstein, M., Poda, D. V., Podviyanuk, R. B., Polischuk, O. G., Shlegel, V. N., Tretyak, V. I., Umatov, V. I., and Vasiliev, Y. V.
206. First results of the experiment to search for 2β decay of 106Cd with the help of 106CdWO4 crystal scintillators
- Author
-
Belli, P., Bernabei, R., Boiko, R. S., Brudanin, V. B., Cappella, F., Caracciolo, V., Cerulli, R., Dmitry Chernyak, Danevich, F. A., D Angelo, S., Dossovitskiy, A. E., Galashov, E. N., Incicchitti, A., Kobychev, V. V., Nagorny, S. S., Nozzoli, F., Kropivyansky, B. N., Kudovbenko, V. M., Mikhlin, A. L., Nikolaiko, A. S., Poda, D. V., Podviyanuk, R. B., Polischuk, O. G., Prosperi, D., Shlegel, V. N., Stenin, Yu G., Suhonen, J., Tretyak, V. I., and Vasiliev, Ya V.
- Subjects
double beta decay ,106Cd ,CdWO4 crystal scintillator ,lcsh:Atomic physics. Constitution and properties of matter ,lcsh:QC170-197 - Abstract
An experiment to search for 2β processes in 106Cd with the help of 106CdWO4 crystal scintillator (mass of 215 g), enriched in 106Cd up to 66 %, is in progress at the Gran Sasso National Laboratories of the INFN (Italy). After 1320 h of data taking, limits on double beta processes in 106Cd have been established on the level of 1019 − 1020 yr, in particular (all the results at 90 % C.L.): T1/2(0ν2ε) > 3.6 · 1020 yr, T1/2(2νεβ+) > 7.2 · 1019 yr, and T1/2(2ν2β+) > 2.5 · 1020 yr. Resonant 0ν2ε processes have been restricted as T1/2(0ν2K) > 1.4 · 1020 yr and T1/2(0νLK) > 3.2 · 1020 yr. A possible resonant enhancement of the 0ν2ε processes is estimated in the framework of the QRPA approach.
207. Precise measurement of $2\nu \beta \beta $ decay of $^{100}$Mo with the CUPID-Mo detection technology
- Author
-
Armengaud, E., Augier, C., Barabash, A. S., Bellini, F., Benato, G., Benoît, A., Beretta, M., Bergé, L., Billard, J., Borovlev, Yu. A., Bourgeois, Ch., Briere, M., Brudanin, V., Camus, P., Cardani, L., Casali, N., Cazes, A., Chapellier, M., Charlieux, F., De Combarieu, M., Dafinei, I., Danevich, F. A., De Jesus, M., Dumoulin, L., Eitel, K., Elkhoury, E., Ferri, F., Fujikawa, B. K., Gascon, J., Gironi, L., Giuliani, A., Grigorieva, V. D., Gros, M., Guerard, E., Helis, D. L., Huang, H. Z., Huang, R., Johnston, J., Juillard, A., Khalife, H., Kleifges, M., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S. I., Leder, A., Kotila, J., Loaiza, P., Ma, L., Makarov, E. P., De Marcillac, P., Marini, L., Marnieros, S., Misiak, D., Navick, X.-F., Nones, C., Novati, V., Olivieri, E., Ouellet, J. L., Pagnanini, L., Pari, P., Pattavina, L., Paul, B., Pavan, M., Peng, H., Pessina, G., Pirro, S., Poda, D. V., Polischuk, O. G., Previtali, E., Redon, Th., Rozov, S., Rusconi, C., Sanglard, V., Schäffner, K., Schmidt, B., Shen, Y., Shlegel, V. N., Siebenborn, B., Singh, V., Tomei, C., Tretyak, V. I., Umatov, V. I., Vagneron, L., Velázquez, M., Weber, M., Welliver, B., Winslow, L., Xue, M., Yakushev, E., and Zolotarova, A. S.
- Subjects
3. Good health - Abstract
We report the measurement of the two-neutrino double-beta (2νββ) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (Li$_{2}$$^{100}$MoO$_{4}$) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg×day, the half-life of $^{100}$Mo is determined to be T2ν¦(1/2)=[7.12(+0.18)¦(-0.14) (stat.)±0.10(syst.)]×10$^{18}$ years. This is the most accurate determination of the 2νββ half-life of $^{100}$Mo to date.
208. First results of the experiment to search for double beta decay of 116Cd with the help of enriched 116CdWO4 crystal scintillators
- Author
-
Barabash, A. S., Belli, P., Bernabei, R., Cappella, F., Caracciolo, V., Castellano, S., Cerulli, R., Chernyak, D. M., Danevich, F. A., Galashov, E. N., Incicchitti, A., Kobychev, V. V., Konovalov, S. I., Laubenstein, M., Poda, D. V., Podviyanuk, R. B., Polischuk, O. G., Shlegel, V. N., Tretyak, V. I., Vladimir Umatov, and Vasiliev, Y. V.
209. R&D towards CUPID (CUORE Upgrade with Particle IDentification)
- Author
-
Wang, G., Chang, C. L., Yefremenko, V., Ding, J., Novosad, V., Bucci, C., Canonica, L., Gorla, P., Nagorny, S. S., Pagliarone, C., Pattavina, L., Pirro, S., Schaeffner, K., Feintzeig, J., Fujikawa, B. K., Mei, Y., Norman, E. B., Wang, B. S., Banks, T. I., Kolomensky, Yu G., Hennings-Yeomans, R., O Donnell, T. M., Singh, V., Moggi, N., Zucchelli, S., Gladstone, L., Winslow, L., Artusa, D. R., Avignone, F. T., Creswick, R. J., Farach, H. A., Rosenfeld, C., Wilson, J., Lanfranchi, J., Schonert, S., Willers, M., Di Domizio, S., Pallavicini, M., Calvo, M., Monfardini, A., Enss, C., Fleischmann, A., Gastaldo, L., Boiko, R. S., Danevich, F. A., Kobychev, V. V., Poda, D. V., Polischuk, O. G., Tretyak, V. I., Keppel, G., Palmieri, V., Kazkaz, K., Sangiorgio, S., Scielzo, N., Hickerson, K., Huang, H., Biassoni, M., Brofferio, C., Capelli, S., Chiesa, D., Clemenza, M., Cremonesi, O., Faverzani, M., Ferri, E., Fiorini, E., Giachero, A., Gironi, L., Gotti, C., Nucciotti, A., Pavan, M., Pessina, G., Previtali, E., Rusconi, C., Sisti, M., Terranova, F., Barabash, A. S., Konovalov, S. I., Nogovizin, V. V., Yumatov, V. I., Petricca, F., Probst, F., Seidel, W., Han, K., Heeger, K. M., Maruyama, R., Lim, K., Ivannikova, N. V., Kasimkin, P. V., Makarov, E. P., Moskovskih, V. A., Shlegel, V. N., Vasiliev, Ya V., Zdankov, V. N., Kokh, A. E., Shevchenko, V. S., Bekker, T. B., Giuliani, A., Marcillac, P., Marnieros, S., Olivieri, E., Taffarello, L., Velazquez, M., Bellini, F., Cardani, L., Nicola Casali, Colantoni, I., Cosmelli, C., Cruciani, A., Dafinei, I., Ferroni, F., Morganti, S., Mosteiro, P. J., Orio, F., Tomei, C., Pettinacci, V., Vignati, M., Castellano, M. G., Nones, C., Gutierrez, T. D., Cao, X. G., Fang, D. Q., Ma, Y. G., Wang, H. W., Deng, X. G., Cazes, A., Jesus, M., Margesin, B., Garcia, E., Martinez, M., Puimedon, J., and Sarsa, M. L.
210. Cryogenic Zinc molybdate scintillating bolometers to search for neutrinoless double beta decay of 100Mo
- Author
-
Chernyak, D. M., Danevich, F. A., Galashov, E. N., Andrea Ernesto Giuliani, Kobychev, V. V., Marnieros, S., Nones, C., Olivieri, E., Shlegel, V. N., Tenconi, M., Tretyak, V. I., and Vasiliev, Y. V.
211. The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects
- Author
-
Armengaud, E., Augier, C., Barabash, A. S., Bellini, F., Benato, G., Benoît, A., Beretta, M., Bergé, L., Billard, J., Borovlev, Yu. A., Bourgeois, Ch., Briere, M., Brudanin, V. B., Camus, P., Cardani, L., Casali, N., Cazes, A., Chapellier, M., Charlieux, F., De Combarieu, M., Dafinei, I., Danevich, F. A., De Jesus, M., Dumoulin, L., Eitel, K., Elkhoury, E., Ferri, F., Fujikawa, B. K., Gascon, J., Gironi, L., Giuliani, A., Grigorieva, V. D., Gros, M., Guerard, E., Helis, D. L., Huang, H. Z., Huang, R., Johnston, J., Juillard, A., Khalife, H., Kleifges, M., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S. I., Leder, A., Loaiza, P., Ma, L., Makarov, E. P., De Marcillac, P., Marini, L., Marnieros, S., Misiak, D., Navick, X. -F., Nones, C., Novati, V., Olivieri, E., Ouellet, J. L., Pagnanini, L., Pari, P., Pattavina, L., Paul, B., Pavan, M., Peng, H., Pessina, G., Pirro, S., Poda, D. V., Polischuk, O. G., Previtali, E., Redon, Th., Rozov, S., Rusconi, C., Sanglard, V., Schäffner, K., Schmidt, B., Shen, Y., Shlegel, V. N., Siebenborn, B., Singh, V., Sorbino, S., Tomei, C., Tretyak, V. I., Umatov, V. I., Vagneron, L., Velázquez, M., Weber, M., Welliver, B., Winslow, L., Xue, M., Yakushev, E., and Zolotarova, A. S.
- Subjects
7. Clean energy
212. BGO crystals grown by a low thermal gradient Czochralski technique
- Author
-
Vasiliev, Y. V., Akhmetshin, R. R., Borovliev, Y. A., Grigoriev, D. N., Gusev, V. A., Shlegel, V. N., and Smakhtin, V. P.
- Published
- 1996
- Full Text
- View/download PDF
213. Recent progress in oxide scintillation crystals development by low-thermal gradient Czochralski technique for particle physics experiments.
- Author
-
Shlegel, V. N., Borovlev, Yu. A., Grigoriev, D. N., Grigorieva, V. D., Danevich, F. A., Ivannikova, N. V., Postupaeva, A. G., and Vasiliev, Ya. V.
- Published
- 2017
- Full Text
- View/download PDF
214. Search for double β decay of 106Cd by using isotopically enriched 106CdWO4 crystal scintillator.
- Author
-
Belli, P., Bernabei, R., Boiko, R. S., Brudanin, V. B., Cappella, F., Caracciolo, V., Cerulli, R., Chernyak, D. M., Danevich, F. A., d'Angelo, S., Galashov, E. N., Incicchitti, A., Kobychev, V. V., Laubenstein, M., Mokina, V. M., Poda, D. V., Podviyanuk, R. B., Polischuk, O. G., Shlegel, V. N., and Stenin, Yu G.
- Published
- 2012
- Full Text
- View/download PDF
215. Comparative Analysis of the Heat Transfer Processes during Growth of Bi12GeO20 and Bi4Ge3O12 Crystals by the Low-Thermal-Gradient Czochralski Technique.
- Author
-
Budenkova, O. N., Vasiliev, M. G., Shlegel, V. N., Ivannikova, N. V., Bragin, R. I., and Kalaev, V. V.
- Subjects
HEAT transfer ,ENERGY transfer ,CRYSTALS ,CRYSTALLIZATION ,CRYSTAL growth ,CRYSTALLOGRAPHY - Abstract
The heat transfer processes occurring in the solid and liquid phases during growth of Bi
12 GeO20 and Bi4 Ge3 O12 crystals by the low-thermal gradient Czochralski method are analyzed and compared. It is experimentally found that, under similar growth conditions, the deflection of the crystallization front for the Bi12 GeO20 crystal is considerably smaller than the deflection of the crystallization front for the Bi4 Ge3 O12 crystal and the faceting of the former front is observed at the earlier stage of pulling. The results of the numerical simulation demonstrate that the different behavior of the crystallization fronts is associated with the difference between the coefficients of thermal absorption in the crystals. © 2005 Pleiades Publishing, Inc. [ABSTRACT FROM AUTHOR]- Published
- 2005
- Full Text
- View/download PDF
216. Characterization of cubic Li 2100 MoO 4 crystals for the CUPID experiment
- Author
-
Federico Ferri, Stefano Dell'Oro, J. Camilleri, V. Shlegel, N. Casali, R. Rizzoli, F. Bellini, A. Ressa, J. A. Scarpaci, C. Augier, Goran Karapetrov, G. Fantini, P. Gras, M. I. Martínez, F.A. Danevich, L. Pagnanini, P. T. Surukuchi, A. Drobizhev, S. H. Fu, C. Oriol, I. Dafinei, T. O'Donnell, E. Figueroa-Feliciano, P. Loaiza, Jie Yang, S. Copello, Haiping Peng, Oliviero Cremonesi, L. Wang, A. Franceschi, C. Pagliarone, Davide Chiesa, Paolo Carniti, A. Juillard, Andrea Barresi, V.I. Tretyak, E. V. Hansen, M. Xue, S. Zucchelli, C. Pira, O. G. Polischuk, X. F. Navick, R. J. Creswick, L. Marini, K. Wilson, I. Colantoni, D. Misiak, C. Rusconi, J. Billard, D. V. Poda, J. Johnston, Jonathan Ouellet, A. Charrier, A. Cruciani, S. L. Wagaarachchi, G. Bari, F. Collamati, V. Yumatov, J. Gascon, C. C. Chang, Stefano Nisi, Changbo Fu, G. Pessina, S. Pirro, L. Pattavina, S. Marnieros, Jie Zhang, G. Wang, G. D'Imperio, A. Cazes, Yuting Liu, E. Celi, Massimiliano Clemenza, A. Tsymbaliuk, Monica Sisti, Valentyn Novosad, I. Nutini, S. Milana, R. Nipoti, C. Nones, A. Puiu, M. Chapellier, H. Z. Huang, V. G. Yefremenko, R. Mariam, B. Schmidt, G. Keppel, Yu. G. Kolomensky, Luigi Cappelli, D. Mayer, O. Tellier, L. Ma, Y. Mei, R. G. Huang, F. Mancarella, M. Faverzani, L. Dumoulin, M. Madhukuttan, H. Khalife, M. Gros, Kai Vetter, S. Di Domizio, D. Baudin, P. Pari, A. Armatol, Giovanni Benato, M. Beretta, Tomas Polakovic, L. Taffarello, Virendra Singh, Danielle Speller, Laura Cardani, K. M. Heeger, B. K. Fujikawa, E. Olivieri, Eric B. Norman, L. Yan, T. Napolitano, S. Pagan, M. Biassoni, B. Mauri, V. Pettinacci, M. de Combarieu, O. Azzolini, M. M. Zarytskyy, A. Giachero, Claudio Gotti, S. I. Konovalov, L. Gironi, Lindley Winslow, M. Pavan, James Nikkel, F. T. Avignone, Whitney Armstrong, V. Sanglard, L. Imbert, C. Bucci, T. D. Gutierrez, C. Brofferio, A. S. Barabash, Ezio Previtali, B. Welliver, P. de Marcillac, D. L. Helis, A. S. Zolotarova, Ke Han, Reina H. Maruyama, B. Paul, A. Giuliani, Silvia Capelli, Massimiliano Nastasi, James R. Wilson, M. De Jesus, E. Armengaud, V. Sharma, Matias Velázquez, V. V. Kobychev, L. Bergé, A. Branca, C. Rosenfeld, V. Boldrini, P. Gorla, F. Ferroni, C. Tomei, Emanuele Ferri, Joseph A. Formaggio, S. Pozzi, V. Dompè, A. D'Addabbo, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), CUPID, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Armatol A., Armengaud E., Armstrong W., Augier C., Avignone F.T., Azzolini O., Barabash A., Bari G., Barresi A., Baudin D., Bellini F., Benato G., Beretta M., Berge L., Biassoni M., Billard J., Boldrini V., Branca A., Brofferio C., Bucci C., Camilleri J., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cazes A., Celi E., Chang C., Chapellier M., Charrier A., Chiesa D., Clemenza M., Colantoni I., Collamati F., Copello S., Cremonesi O., J.Creswick R., Cruciani A., D'Addabbo A., D'Imperio G., Dafinei I., A.Danevich F., deCombarieu M., DeJesus M., deMarcillac P., Dell'Oro S., DiDomizio S., Dompe V., Drobizhev A., Dumoulin L., Fantini G., Faverzani M., Ferri E., Ferri F., Ferroni F., Figueroa-Feliciano E., Formaggio J., Franceschi A., Fu C., Fu S., Fujikawa B.K., Gascon J., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gras P., Gros M., Gutierrez T.D., Han K., Hansen E.V., Heeger K.M., Helis D.L., Huang H.Z., Huang R.G., Imbert L., Johnston J., Juillard A., Karapetrov G., Keppel G., Khalife H., Kobychev V.V., Kolomensky Y.G., Konovalov S., Liu Y., Loaiza P., Ma L., Madhukuttan M., Mancarella F., Mariam R., Marini L., Marnieros S., Martinez M., Maruyama R.H., Mauri B., Mayer D., Mei Y., Milana S., Misiak D., Napolitano T., Nastasi M., Navick X.F., Nikkel J., Nipoti R., Nisi S., Nones C., Norman E.B., Novosad V., Nutini I., O'Donnell T., Olivieri E., Oriol C., Ouellet J.L., Pagan S., Pagliarone C., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pettinacci V., Pira C., Pirro S., V.Poda D., Polakovic T., Polischuk O.G., Pozzi S., Previtali E., Puiu A., Ressa A., Rizzoli R., Rosenfeld C., Rusconi C., Sanglard V., Scarpaci J.A., Schmidt B., Sharma V., Shlegel V., Singh V., Sisti M., Speller D., Surukuchi P.T., Taffarello L., Tellier O., Tomei C., Tretyak V.I., Tsymbaliuk A., Velazquez M., Vetter K.J., Wagaarachchi S.L., Wang G., Wang L., Welliver B., Wilson J., Wilson K., Winslow L.A., Xue M., Yan L., Yang J., Yefremenko V., Yumatov V., Zarytskyy M.M., Zhang J., Zolotarova A., Zucchelli S., Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone, F, Azzolini, O, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cremonesi, O, J. Creswick, R, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, A. Danevich, F, Decombarieu, M, Dejesus, M, Demarcillac, P, Dell'Oro, S, Didomizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fantini, G, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Figueroa-Feliciano, E, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, B, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, V, Kolomensky, Y, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, R, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, X, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, E, Novosad, V, Nutini, I, O'Donnell, T, Olivieri, E, Oriol, C, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, V. Poda, D, Polakovic, T, Polischuk, O, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Rizzoli, R, Rosenfeld, C, Rusconi, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Tellier, O, Tomei, C, Tretyak, V, Tsymbaliuk, A, Velazquez, M, Vetter, K, Wagaarachchi, S, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, M, Zhang, J, Zolotarova, A, and Zucchelli, S
- Subjects
Mo-100 ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,background: induced ,Physics::Instrumentation and Detectors ,Monte Carlo method ,measurement methods ,bolometers, neutrinoless double beta decay ,energy resolution ,Parameter space ,01 natural sciences ,Nuclear Experiment (nucl-ex) ,Double Beta Decay ,Nuclear Experiment ,background: suppression ,Physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,molybdenum: oxygen ,Double-beta decay detector ,Low Temperature Detector ,lithium ,Scintillation counter ,Neutrino ,photon: yield ,numerical calculations: Monte Carlo ,bolometers ,FOS: Physical sciences ,Cryogenic detector ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,neutrinoless double beta decay ,Particle identification method ,double-beta decay: (0neutrino) ,Double beta decay ,CUPID ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Engineering (miscellaneous) ,scintillation counter ,Scintillation ,molybdenum: nuclide ,010308 nuclear & particles physics ,bibliography ,crystal: geometry ,Computational physics ,efficiency ,FIS/04 - FISICA NUCLEARE E SUBNUCLEARE ,Energy (signal processing) - Abstract
The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$$_{2}$$ 2 $$^{100}$$ 100 MoO$$_4$$ 4 crystals as suitable detectors for neutrinoless double beta decay search. In this work, we characterised cubic crystals that, compared to the cylindrical crystals used by CUPID-Mo, are more appealing for the construction of tightly packed arrays. We measured an average energy resolution of ($$6.7\pm 0.6$$ 6.7 ± 0.6 ) keV FWHM in the region of interest, approaching the CUPID target of 5 keV FWHM. We assessed the identification of $$\alpha $$ α particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $$\alpha $$ α -induced background contribution. We also used the collected data to validate a Monte Carlo simulation modelling the light collection efficiency, which will enable further optimisations of the detector.
- Published
- 2021
- Full Text
- View/download PDF
217. Novel technique for the study of pileup events in cryogenic bolometers
- Author
-
Valentyn Novosad, Andrea Giachero, R. Nipoti, Jie Zhang, H. Z. Huang, V. G. Yefremenko, G. Keppel, D. Mayer, C. Nones, A. Puiu, S. Nisi, A. Armatol, K. Wilson, I. Colantoni, A. Barresi, P. Loaiza, C. Oriol, G. Pessina, V. Sanglard, L. Imbert, M. Faverzani, M. Beretta, S. Copello, C. Pagliarone, F.A. Danevich, A. Branca, Jonathan Ouellet, T. O'Donnell, Paolo Carniti, Massimiliano Clemenza, G. Bari, S. Di Domizio, Kai Vetter, C. Rosenfeld, D. L. Helis, Monica Sisti, Federico Ferri, H. Khalife, V. Boldrini, P. Gorla, P. Pari, F. Ferroni, Tomas Polakovic, B. Schmidt, Stefano Dell'Oro, A. Charrier, J. Billard, C. Tomei, S. H. Fu, N. Casali, Laura Cardani, G. Wang, Jie Yang, B. K. Fujikawa, R. J. Creswick, Davide Chiesa, P. Gras, M. Chapellier, C. Pira, Joseph A. Formaggio, L. Pagnanini, P. T. Surukuchi, C. Brofferio, L. Wang, Massimiliano Nastasi, Stefano Pozzi, E. Figueroa-Feliciano, Haiping Peng, V. Shlegel, V. Sharma, E. V. Hansen, A. S. Barabash, B. Paul, M. Gros, Evelyn Ferri, Oliviero Cremonesi, S. Zucchelli, James Nikkel, Ezio Previtali, J. Gascon, R. Mariam, C. C. Chang, L. Ma, Yu. G. Kolomensky, Luigi Cappelli, L. Taffarello, B. Welliver, A. Giuliani, M. Madhukuttan, Matias Velázquez, C. Augier, S. Marnieros, V. Yumatov, Goran Karapetrov, G. Fantini, A. Cazes, Danielle Speller, James R. Wilson, A. Cruciani, X. F. Navick, S. Pirro, V. V. Kobychev, J. Camilleri, A. Franceschi, Changbo Fu, C. Rusconi, J. A. Scarpaci, A. Juillard, L. Bergé, R. Rizzoli, M. M. Zarytskyy, V. Dompè, G. D'Imperio, Irene Nutini, A. D'Addabbo, P. de Marcillac, M. De Jesus, O. G. Polischuk, F. Bellini, A. Ressa, D. Baudin, M. Xue, M. Pavan, Lindley Winslow, A. Drobizhev, I. Dafinei, S. L. Wagaarachchi, F. Collamati, V. Pettinacci, Simone Capelli, E. Olivieri, S. I. Konovalov, Eric B. Norman, L. Pattavina, M. I. Martínez, T. Napolitano, L. Marini, V.I. Tretyak, D. Misiak, D. V. Poda, J. Johnston, M. Biassoni, E. Armengaud, Vasundhara Singh, S. Milana, O. Azzolini, L. Gironi, F. T. Avignone, Whitney Armstrong, Y. Liu, C. Bucci, T. D. Gutierrez, R. G. Huang, F. Mancarella, L. Yan, S. Pagan, B. Mauri, M. de Combarieu, E. Celi, C. Gotti, A. S. Zolotarova, Ke Han, Reina H. Maruyama, A. Tsymbaliuk, Y. Mei, K. M. Heeger, O. Tellier, L. Dumoulin, Giovanni Benato, Armatol A., Armengaud E., Armstrong W., Augier C., Avignone F.T., Azzolini O., Barabash A., Bari G., Barresi A., Baudin D., Bellini F., Benato G., Beretta M., Berge L., Biassoni M., Billard J., Boldrini V., Branca A., Brofferio C., Bucci C., Camilleri J., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cazes A., Celi E., Chang C., Chapellier M., Charrier A., Chiesa D., Clemenza M., Colantoni I., Collamati F., Copello S., Cremonesi O., Creswick R.J., Cruciani A., D'Addabbo A., D'Imperio G., Dafinei I., Danevich F.A., De Combarieu M., De Jesus M., De Marcillac P., Dell'Oro S., Di Domizio S., Dompe V., Drobizhev A., Dumoulin L., Fantini G., Faverzani M., Ferri E., Ferri F., Ferroni F., Figueroa-Feliciano E., Formaggio J., Franceschi A., Fu C., Fu S., Fujikawa B.K., Gascon J., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gras P., Gros M., Gutierrez T.D., Han K., Hansen E.V., Heeger K.M., Helis D.L., Huang H.Z., Huang R.G., Imbert L., Johnston J., Juillard A., Karapetrov G., Keppel G., Khalife H., Kobychev V.V., Kolomensky Y.G., Konovalov S., Liu Y., Loaiza P., Ma L., Madhukuttan M., Mancarella F., Mariam R., Marini L., Marnieros S., Martinez M., Maruyama R.H., Mauri B., Mayer D., Mei Y., Milana S., Misiak D., Napolitano T., Nastasi M., Navick X.F., Nikkel J., Nipoti R., Nisi S., Nones C., Norman E.B., Novosad V., Nutini I., O'Donnell T., Olivieri E., Oriol C., Ouellet J.L., Pagan S., Pagliarone C., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pettinacci V., Pira C., Pirro S., Poda D.V., Polakovic T., Polischuk O.G., Pozzi S., Previtali E., Puiu A., Ressa A., Rizzoli R., Rosenfeld C., Rusconi C., Sanglard V., Scarpaci J., Schmidt B., Sharma V., Shlegel V., Singh V., Sisti M., Speller D., Surukuchi P.T., Taffarello L., Tellier O., Tomei C., Tretyak V.I., Tsymbaliuk A., Velazquez M., Vetter K.J., Wagaarachchi S.L., Wang G., Wang L., Welliver B., Wilson J., Wilson K., Winslow L.A., Xue M., Yan L., Yang J., Yefremenko V., Yumatov V., Zarytskyy M.M., Zhang J., Zolotarova A., Zucchelli S., Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), CUPID, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone, F, Azzolini, O, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cremonesi, O, Creswick, R, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, Danevich, F, De Combarieu, M, De Jesus, M, De Marcillac, P, Dell'Oro, S, Di Domizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fantini, G, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Figueroa-Feliciano, E, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, B, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, V, Kolomensky, Y, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, R, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, X, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, E, Novosad, V, Nutini, I, O'Donnell, T, Olivieri, E, Oriol, C, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Poda, D, Polakovic, T, Polischuk, O, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Rizzoli, R, Rosenfeld, C, Rusconi, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Tellier, O, Tomei, C, Tretyak, V, Tsymbaliuk, A, Velazquez, M, Vetter, K, Wagaarachchi, S, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, M, Zhang, J, Zolotarova, A, and Zucchelli, S
- Subjects
data analysis method ,double beta decay, nuclear tests of fundamental interactions, Particle decays ,Physics - Instrumentation and Detectors ,double beta decay ,FOS: Physical sciences ,Cryogenics ,MESH: numerical calculation ,01 natural sciences ,law.invention ,benchmark ,bolometer ,double-beta decay: (0neutrino) ,law ,Double beta decay ,0103 physical sciences ,Electronic engineering ,MESH: benchmark ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,numerical calculations ,010306 general physics ,time resolution ,nuclear tests of fundamental interactions ,Physics ,Signal generator ,010308 nuclear & particles physics ,Bolometer ,Detector ,Time resolution ,MESH: data analysis method ,Instrumentation and Detectors (physics.ins-det) ,MESH: bolometer ,Gran Sasso ,Neutrinoless Double Beta decay, Neutrino Physics ,MESH: cryogenics ,efficiency ,cryogenics ,pile-up ,Rise time ,MESH: Gran Sasso ,Benchmark (computing) ,MESH: double-beta decay: (0neutrino) ,Neutrinoless double-beta decay ,MESH: efficiency ,Particle decays ,MESH: time resolution ,MESH: pile-up - Abstract
International audience; Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pile-up events with a programmable waveform generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pile-up events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pile-up pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pile-up events with rise time of ~15 ms down to time separation between the individual events of 2 ms.
- Published
- 2021
- Full Text
- View/download PDF
218. The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals.
- Author
-
Moskovskih, V. A., Kasimkin, P. V., Shlegel, V. N., Vasiliev, Y. V., Gridchin, V. A., and Podkopaev, O. I.
- Subjects
- *
THERMAL gradient measurment , *GERMANIUM crystal growth , *CRYSTAL defects , *SINGLE crystals , *DISLOCATIONS in crystals , *TEMPERATURE effect , *SEMICONDUCTORS - Abstract
This paper considers the possibility of growth of dislocation-free germanium single crystals. This is achieved by reducing the temperature gradients at the level of ~1 K/cm and lower. Single germanium crystals 45-48 mm in diameter with a dislocation density of 10² cm-2 were grown by a Low Thermal Gradient Czochralski technique (LTG CZ). [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
219. Study of the possibility of growing germanium single crystals under low temperature gradients.
- Author
-
Moskovskih, V., Kasimkin, P., Shlegel, V., Vasiliev, Y., Gridchin, V., Podkopaev, O., and Zhdankov, V.
- Subjects
- *
GERMANIUM crystal growth , *SINGLE crystals , *METALS at low temperatures , *DISLOCATION density , *FREE material - Abstract
The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
220. Production and characterisation of a PbMoO4 cryogenic detector from archaeological Pb.
- Author
-
Pattavina, L., Nagorny, S., Nisi, S., Pagnanini, L., Pessina, G., Pirro, S., Rusconi, C., Schäffner, K., Shlegel, V. N., and Zhdankov, V. N.
- Subjects
- *
DETECTORS , *CRYSTAL growth , *DEBYE temperatures , *LOW temperatures , *RAW materials , *ACCELERATOR mass spectrometry - Abstract
We operated a PbMoO 4 scintillating cryogenic detector of 570 g, produced with archaeological lead. This compound features excellent low temperature characteristics in terms of light yield, 12 keV/MeV for β / γ interactions, and FWHM energy resolution, 11.7 keV at 2.6 MeV. Furthermore, the detector allows for an effective particle identification by means of pulse shape analysis on the heat read-out channel. The implementation of innovative techniques and procedures for the purification of raw materials used for the crystal growth, and the highly-pure archaeological Pb, allowed for the production of large volume high-quality crystal. The overall characteristics of the detector operated at cryogenic temperatures makes PbMoO 4 an excellent compound for neutrino physics applications, especially neutrinoless double-beta studies. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
221. Excitation density effects in luminescence properties of CaMoO4 and ZnMoO4.
- Author
-
Spassky, D., Vasil'ev, A., Belsky, A., Fedorov, N., Martin, P., Markov, S., Buzanov, O., Kozlova, N., and Shlegel, V.
- Subjects
- *
EXCITON theory , *DIPOLE-dipole interactions , *DENSITY , *LUMINESCENCE , *DIFFUSION - Abstract
The effect of the self-trapped excitons interaction under dense laser excitation was studied in ZnMoO 4 and CaMoO 4. The interaction results in the quenching of exciton's luminescence and in the non-exponential character of decay kinetics. The threshold values of exciton's concentration in the crystals for the quenching effect are determined. The generalized quenching model, which accounts for thermal quenching of excitonic emission and excitons mobility has been developed. The model has been applied for numerical simulation of the experimental data and allowed to obtain the parameters of dynamics (diffusion) and interaction (radius of the dipole-dipole interaction) of self-trapped excitons with account for 3D nonuniform distribution of the initial concentration of excitations. • Excitons interaction is studied in CaMoO 4 and ZnMoO 4 under dense laser excitation. • The liminal concentrations of excitons for observation of their interaction were determined. • The generalized quenching model of excitons interaction was developed. • The interaction radii R d-d are calculated from the data of Z-scan and decay curves. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
222. Charge trapping processes and energy transfer studied in lead molybdate by EPR and TSL.
- Author
-
Buryi, M., Laguta, V., Fasoli, M., Moretti, F., Jurek, K., Trubitsyn, M., Volnianskii, M., Nagorny, S., Shlegel, V., Vedda, A., and Nikl, M.
- Subjects
- *
MOLYBDATES , *CHARGE transfer , *LEAD compounds , *ELECTRON paramagnetic resonance , *PHOTOLUMINESCENCE , *ENERGY transfer - Abstract
Abstract Charge trapping and energy transfer processes are investigated in PbMoO 4 single crystals by electron paramagnetic resonance (EPR) and wavelength-resolved thermally stimulated luminescence (TSL) in a correlated manner. New signals produced by two differently perturbed Mo5+ centers (Mo2 and Mo3) were observed in EPR spectra measured in the crystals after 420 nm light irradiation. Two sets of spin-Hamiltonian parameters, g tensor and the 95,97Mo, 207Pb (super) hyperfine tensors, have been determined and analyzed in terms of crystal field and LCAO-MO theories. A significant overlap of the Mo 5d 1 and 6s6p ligand Pb orbitals was deduced for the Mo3 whereas the Mo2 center seemed to be not or very slightly affected by the lead orbitals. The obtained TSL results allowed to suppose the existence of at least six glow peaks produced by the de-trapping of charge carrier traps either of intrinsic nature or somehow stabilized by nearby accidental impurities. The peaks having maxima at 51 K, 79 K, and 89 K, in particular, were attributed to the Mo2 and Mo3 centers thermal destruction due to the observed correspondence between the kinetic parameters (trap depths and frequency factors) determined separately for the glow peaks and the EPR intensity thermal decay curves of these centers. The Mo2 EPR decay curve is rather complex experiencing two-step trend probably due to trapped electron recombination with some holes released below 60 K. It was further confirmed by the TSL emission maximum relatively large red shift (~ 100 nm) compared to the much smaller offset measured in radioluminescence. This phenomenon, observed also in samples obtained from extra-pure starting materials, was explained by three-component origin of the spectra, each having its own thermal fading rate. One of them ceased to exist above 60 K. The discussion of the obtained results is provided in comparison with other representatives of the scheelite tungstate and molybdate-based single crystals. Graphical abstract fx1 [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
223. Investigation of the Thermal Conductivity of Tungstate Crystals.
- Author
-
Popov, P. A., Skrobov, S. A., Zharikov, E. V., Lis, D. A., Subbotin, K. A., Ivleva, L. I., Shlegel', V. N., Kosmyna, M. B., and Shekhovtsov, A. N.
- Subjects
- *
SINGLE crystals , *MOLECULAR dynamics , *CRYSTALLIZATION , *THERMAL conductivity , *CRYSTAL structure - Abstract
Thermal conductivities of MWO4 (M = Ca, Cd, or Ba), NaGd(WO4)2:1 at % Er, NaGd(WO4)2:2 at % Yb, and NaLa0.5Gd0.5(WO4)2:2 at % Nd single crystals have been experimentally investigated in the temperature range of 50-300 K. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
224. Compositionally disordered tungstate scintillation materials.
- Author
-
Korzhik, M., Blau, D., Fedorov, A., Bondarau, A., Borovlev, Yu, Amelina, A., Komendo, I., Kuznetsova, D., Mikhlin, A., Mechinsky, V., Postupaeva, A., Shlegel, V., Talochka, Y., and Uglov, V.
- Subjects
- *
SCINTILLATORS , *TUNGSTEN trioxide , *TUNGSTATES , *DIAGNOSTIC imaging , *ALKALINE earth metals - Abstract
The scintillation properties of compositionally disordered self-activated scintillation materials: (Pb, Ca)WO 4 , (Pb, Sr)WO 4 and, (Pb, Ba)WO 4 are described for a fist time. New family of the scintillation materials has a density more than 7 g/cm3, an effective charge Z eff >70. The scintillation kinetics occurs faster and the light yield (LY) is close to the LY of Bi 4 Ge 3 O 12 (BGO). New materials have a good prospect for application in nuclear instrumentation and medical imaging devises. • Scintillation properties of (Pb,Ca)WO 4 , (Pb,Sr)WO 4 and (Pb,Ba)WO 4 investigated for the first time. • Mixed tungstates possess a higher light yield of scintillation than lead tungstate. • Scintillation kinetics are good enough to obtain high coincidence time resolution. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
225. Machine Learning Techniques for Pile-Up Rejection in Cryogenic Calorimeters
- Author
-
G. Fantini, A. Armatol, E. Armengaud, W. Armstrong, C. Augier, F. T. Avignone, O. Azzolini, A. Barabash, G. Bari, A. Barresi, D. Baudin, F. Bellini, G. Benato, M. Beretta, L. Bergé, M. Biassoni, J. Billard, V. Boldrini, A. Branca, C. Brofferio, C. Bucci, J. Camilleri, S. Capelli, L. Cappelli, L. Cardani, P. Carniti, N. Casali, A. Cazes, E. Celi, C. Chang, M. Chapellier, A. Charrier, D. Chiesa, M. Clemenza, I. Colantoni, F. Collamati, S. Copello, F. Cova, O. Cremonesi, R. J. Creswick, A. Cruciani, A. D’Addabbo, G. D’Imperio, I. Dafinei, F. A. Danevich, M. de Combarieu, M. De Jesus, P. de Marcillac, S. Dell’Oro, S. Di Domizio, V. Dompè, A. Drobizhev, L. Dumoulin, M. Fasoli, M. Faverzani, E. Ferri, F. Ferri, F. Ferroni, E. Figueroa-Feliciano, J. Formaggio, A. Franceschi, C. Fu, S. Fu, B. K. Fujikawa, J. Gascon, A. Giachero, L. Gironi, A. Giuliani, P. Gorla, C. Gotti, P. Gras, M. Gros, T. D. Gutierrez, K. Han, E. V. Hansen, K. M. Heeger, D. L. Helis, H. Z. Huang, R. G. Huang, L. Imbert, J. Johnston, A. Juillard, G. Karapetrov, G. Keppel, H. Khalife, V. V. Kobychev, Yu. G. Kolomensky, S. Konovalov, Y. Liu, P. Loaiza, L. Ma, M. Madhukuttan, F. Mancarella, R. Mariam, L. Marini, S. Marnieros, M. Martinez, R. H. Maruyama, B. Mauri, D. Mayer, Y. Mei, S. Milana, D. Misiak, T. Napolitano, M. Nastasi, X. F. Navick, J. Nikkel, R. Nipoti, S. Nisi, C. Nones, E. B. Norman, V. Novosad, I. Nutini, T. O’Donnell, E. Olivieri, C. Oriol, J. L. Ouellet, S. Pagan, C. Pagliarone, L. Pagnanini, P. Pari, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, V. Pettinacci, C. Pira, S. Pirro, D. V. Poda, T. Polakovic, O. G. Polischuk, S. Pozzi, E. Previtali, A. Puiu, A. Ressa, R. Rizzoli, C. Rosenfeld, C. Rusconi, V. Sanglard, J. Scarpaci, B. Schmidt, V. Sharma, V. Shlegel, V. Singh, M. Sisti, D. Speller, P. T. Surukuchi, L. Taffarello, O. Tellier, C. Tomei, V. I. Tretyak, A. Tsymbaliuk, A. Vedda, M. Velazquez, K. J. Vetter, S. L. Wagaarachchi, G. Wang, L. Wang, B. Welliver, J. Wilson, K. Wilson, L. A. Winslow, M. Xue, L. Yan, J. Yang, V. Yefremenko, V. Yumatov, M. M. Zarytskyy, J. Zhang, A. Zolotarova, S. Zucchelli, Fantini, G, Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone, FT, Azzolini, O, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cova, F, Cremonesi, O, Creswick, RJ, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, Danevich, FA, de Combarieu, M, De Jesus, M, de Marcillac, P, Dell'Oro, S, Di Domizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fasoli, M, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, BK, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Gutierrez, TD, Han, K, Hansen, EV, Heeger, KM, Helis, DL, Huang, HZ, Huang, RG, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, VV, Kolomensky, YG, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, RH, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, XF, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, EB, Novosad, V, Nutini, I, O'Donnell, T, Olivieri, E, Oriol, C, Ouellet, JL, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Poda, DV, Polakovic, T, Polischuk, OG, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Rizzoli, R, Rosenfeld, C, Rusconi, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, PT, Taffarello, L, Tellier, O, Tomei, C, Tretyak, VI, Tsymbaliuk, A, Vedda, A, Velazquez, M, Vetter, KJ, Wagaarachchi, SL, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, LA, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, MM, Zhang, J, Zolotarova, A, Zucchelli, S, Laboratoire de Cryogénie (LC), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Avignone, F, Bergé, L, Creswick, R, D’Addabbo, A, D’Imperio, G, Danevich, F, Dell’Oro, S, Domizio, S, Dompè, V, Figueroa-Feliciano, E, Fujikawa, B, Gutierrez, T, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Kobychev, V, Kolomensky, Y, Maruyama, R, Navick, X, Norman, E, O’Donnell, T, Ouellet, J, Poda, D, Polischuk, O, Surukuchi, P, Tretyak, V, Vetter, K, Wagaarachchi, S, Winslow, L, and Zarytskyy, M
- Subjects
neural network ,Convolutional neural network ,hierarchy ,crystal ,Cryogenic calorimeters ,neutrino ,Machine learning ,CUPID ,calorimeter ,[INFO]Computer Science [cs] ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Neutrinoless double beta decay ,neutrinoless ,Pile-up ,CUORE ,background ,double-beta decay ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Gran Sasso ,injection ,cryogenics ,efficiency ,mass ,readout ,Convolutional neural networks ,upgrade ,Cryogenic calorimeter ,performance ,Majorana - Abstract
CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale array of Li2MoO4 (LMO) cryogenic calorimeters with double readout of heat and light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino masses in the search for neutrinoless double beta decay of 100Mo. Pile-up of standard double beta decay of the candidate isotope is a relevant background. We generate pile-up heat events via injection of Joule heater pulses with a programmable waveform generator in a small array of LMO crystals operated underground in the Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and control both time difference and underlying amplitudes of individual heat pulses in the data. We present the performance of supervised learning classifiers on data and the attained pile-up rejection efficiency.
- Published
- 2022
- Full Text
- View/download PDF
226. Final results on the $$0\nu \beta \beta $$ decay half-life limit of $$^{100}$$Mo from the CUPID-Mo experiment
- Author
-
C. Augier, A. S. Barabash, F. Bellini, G. Benato, M. Beretta, L. Bergé, J. Billard, Yu. A. Borovlev, L. Cardani, N. Casali, A. Cazes, M. Chapellier, D. Chiesa, I. Dafinei, F. A. Danevich, M. De Jesus, P. de Marcillac, T. Dixon, L. Dumoulin, K. Eitel, F. Ferri, B. K. Fujikawa, J. Gascon, L. Gironi, A. Giuliani, V. D. Grigorieva, M. Gros, D. L. Helis, H. Z. Huang, R. Huang, L. Imbert, J. Johnston, A. Juillard, H. Khalife, M. Kleifges, V. V. Kobychev, Yu. G. Kolomensky, S. I. Konovalov, P. Loaiza, L. Ma, E. P. Makarov, R. Mariam, L. Marini, S. Marnieros, X.-F. Navick, C. Nones, E. B. Norman, E. Olivieri, J. L. Ouellet, L. Pagnanini, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, S. Pirro, D. V. Poda, O. G. Polischuk, S. Pozzi, E. Previtali, Th. Redon, A. Rojas, S. Rozov, V. Sanglard, J. A. Scarpaci, B. Schmidt, Y. Shen, V. N. Shlegel, V. Singh, C. Tomei, V. I. Tretyak, V. I. Umatov, L. Vagneron, M. Velázquez, B. Welliver, L. Winslow, M. Xue, E. Yakushev, M. Zarytskyy, A. S. Zolotarova, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Souterrain de Modane (LSM - UMR 6417), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Augier, C, Barabash, A, Bellini, F, Benato, G, Beretta, M, Berge, L, Billard, J, Borovlev, Y, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Chiesa, D, Dafinei, I, Danevich, F, De Jesus, M, de Marcillac, P, Dixon, T, Dumoulin, L, Eitel, K, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Helis, D, Huang, H, Huang, R, Imbert, L, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Loaiza, P, Ma, L, Makarov, E, Mariam, R, Marini, L, Marnieros, S, Navick, X, Nones, C, Norman, E, Olivieri, E, Ouellet, J, Pagnanini, L, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Pozzi, S, Previtali, E, Redon, T, Rojas, A, Rozov, S, Sanglard, V, Scarpaci, J, Schmidt, B, Shen, Y, Shlegel, V, Singh, V, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velazquez, M, Welliver, B, Winslow, L, Xue, M, Yakushev, E, Zarytskyy, M, and Zolotarova, A
- Subjects
radiopurity ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Double-beta decay ,energy spectrum ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,angular momentum ,thermal ,X-ray ,cryogenic detector ,enriched materials ,muon ,cryogenic detectors ,calorimeter ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,scintillating calorimeter ,scintillator ,100Mo ,Lithium molybdate ,high performance ,particle identification ,low background ,dimension: 2 ,100 Mo ,Majorana neutrino ,Engineering (miscellaneous) ,lepton number: violation ,Nuclear Experiment ,scintillation counter ,background ,neutrino: Majorana: mass ,nucleus ,temperature ,neutrino: exchange ,lithium ,gamma ray ,efficiency ,neutrino: Majorana ,numerical calculations: Monte Carlo ,double beta decay, neutrino - Abstract
The CUPID-Mo experiment to search for 0$$\nu \beta \beta $$ ν β β decay in $$^{100}$$ 100 Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a demonstrator for CUPID, a next generation 0$$\nu \beta \beta $$ ν β β decay experiment. CUPID-Mo was comprised of 20 enriched $$\hbox {Li}_{{2}}$$ Li 2 $$^{100}$$ 100 $$\hbox {MoO}_4$$ MoO 4 scintillating calorimeters, each with a mass of $$\sim 0.2$$ ∼ 0.2 kg, operated at $$\sim 20$$ ∼ 20 mK. We present here the final analysis with the full exposure of CUPID-Mo ($$^{100}$$ 100 Mo exposure of 1.47 $$\hbox {kg} \times \hbox {year}$$ kg × year ) used to search for lepton number violation via 0$$\nu \beta \beta $$ ν β β decay. We report on various analysis improvements since the previous result on a subset of data, reprocessing all data with these new techniques. We observe zero events in the region of interest and set a new limit on the $$^{100}$$ 100 Mo 0$$\nu \beta \beta $$ ν β β decay half-life of $$T_{1/2}^{0\nu }$$ T 1 / 2 0 ν $$> {1.8}\times 10^{24}$$ > 1.8 × 10 24 year (stat. + syst.) at 90% CI. Under the light Majorana neutrino exchange mechanism this corresponds to an effective Majorana neutrino mass of $$\left$$ m β β $$ < ( 0.28 - 0.49 ) eV, dependent upon the nuclear matrix element utilized.
- Published
- 2022
- Full Text
- View/download PDF
227. Charge trapping processes and energy transfer studied in lead molybdate by EPR and TSL
- Author
-
Anna Vedda, Martin Nikl, V. V. Laguta, M. Trubitsyn, Maksym Buryi, Mauro Fasoli, S. Nagorny, K. Jurek, V. Shlegel, Federico Moretti, M. Volnianskii, Buryi, M, Laguta, V, Fasoli, M, Moretti, F, Jurek, K, Trubitsyn, M, Volnianskii, M, Nagorny, S, Shlegel, V, Vedda, A, and Nikl, M
- Subjects
Materials science ,Lead molybdate ,Biophysics ,02 engineering and technology ,Trapping ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Molecular physics ,Spectral line ,Wavelength resolved TSL ,Electron trap ,law.invention ,Crystal ,law ,Electron paramagnetic resonance ,Hyperfine structure ,General Chemistry ,Radioluminescence ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,FIS/01 - FISICA SPERIMENTALE ,Charge carrier ,EPR ,0210 nano-technology ,Luminescence - Abstract
Charge trapping and energy transfer processes are investigated in PbMoO4 single crystals by electron paramagnetic resonance (EPR) and wavelength-resolved thermally stimulated luminescence (TSL) in a correlated manner. New signals produced by two differently perturbed Mo5+ centers (Mo2 and Mo3) were observed in EPR spectra measured in the crystals after 420 nm light irradiation. Two sets of spin-Hamiltonian parameters, g tensor and the 95,97Mo, 207Pb (super) hyperfine tensors, have been determined and analyzed in terms of crystal field and LCAO-MO theories. A significant overlap of the Mo 5d1 and 6s6p ligand Pb orbitals was deduced for the Mo3 whereas the Mo2 center seemed to be not or very slightly affected by the lead orbitals. The obtained TSL results allowed to suppose the existence of at least six glow peaks produced by the de-trapping of charge carrier traps either of intrinsic nature or somehow stabilized by nearby accidental impurities. The peaks having maxima at 51 K, 79 K, and 89 K, in particular, were attributed to the Mo2 and Mo3 centers thermal destruction due to the observed correspondence between the kinetic parameters (trap depths and frequency factors) determined separately for the glow peaks and the EPR intensity thermal decay curves of these centers. The Mo2 EPR decay curve is rather complex experiencing two-step trend probably due to trapped electron recombination with some holes released below 60 K. It was further confirmed by the TSL emission maximum relatively large red shift (~ 100 nm) compared to the much smaller offset measured in radioluminescence. This phenomenon, observed also in samples obtained from extra-pure starting materials, was explained by three-component origin of the spectra, each having its own thermal fading rate. One of them ceased to exist above 60 K. The discussion of the obtained results is provided in comparison with other representatives of the scheelite tungstate and molybdate-based single crystals.
- Published
- 2019
228. A CUPID Li$_2$ $^{100} $MoO$_4$ scintillating bolometer tested in the CROSS underground facility
- Author
-
A. S. Barabash, V. Yumatov, G. D'Imperio, M. De Deo, Ezio Previtali, J. M. Calvo-Mozota, Evelyn Ferri, B. Welliver, L. Gironi, L. Marini, E. Guerard, D. Misiak, D. V. Poda, J. Johnston, V. Dompè, F. T. Avignone, Whitney Armstrong, A. Charrier, O. Tellier, I. Colantoni, A. D'Addabbo, S. Di Domizio, P. Pari, Tomas Polakovic, Massimiliano Clemenza, V. Shlegel, R. Mariam, Yu. G. Kolomensky, Luigi Cappelli, Monica Sisti, M. Pavan, S. Zucchelli, Laura Cardani, P. de Marcillac, C. Augier, Goran Karapetrov, X.-F. Navick, B. K. Fujikawa, Stefano Pozzi, L. Pagnanini, P. T. Surukuchi, O. Azzolini, G. Fantini, Federico Ferri, B. Schmidt, C. Oriol, C. Pagliarone, E. Celi, T. O'Donnell, S. H. Fu, S. Dell'Oro, Giovanni Benato, M. Xue, Yuting Liu, Ch. Bourgeois, C. C. Chang, Stefano Nisi, James R. Wilson, S. Milana, G. Olivier, A. Cruciani, A. Franceschi, Changbo Fu, I. Dafinei, M. Chapellier, C. Gotti, S. Copello, C. Brofferio, S. Pirro, Jie Yang, V. Sharma, D. L. Helis, A. Barresi, J. Camilleri, R. Rizzoli, L. Ma, L. Dumoulin, Davide Chiesa, A. S. Zolotarova, Paolo Carniti, V. Pettinacci, A. Juillard, A. Candela, M. Gros, M. Madhukuttan, I. C. Bandac, M. De Jesus, E. V. Hansen, O. G. Polischuk, A. Drobizhev, Ke Han, F. Bellini, A. Ressa, Reina H. Maruyama, V.I. Tretyak, F.A. Danevich, J. A. Scarpaci, C. Bucci, T. D. Gutierrez, M. Faverzani, Matias Velázquez, P. Loaiza, Kai Vetter, Massimiliano Nastasi, S. I. Konovalov, L. Taffarello, D. Reynet, V. V. Kobychev, L. Bergé, J. Gascon, V. Sanglard, L. Yan, L. Imbert, Virendra Singh, M. M. Zarytskyy, Valentyn Novosad, C. Rosenfeld, Danielle Speller, Andrea Giachero, N. Casali, A. Branca, L. Pattavina, A. Ianni, E. Olivieri, R. J. Creswick, Eric B. Norman, V. Boldrini, P. Gras, K. Wilson, S. Pagan, J. Billard, S. Marnieros, Li Wang, T. Napolitano, R. Nipoti, A. Cazes, P. Gorla, F. Ferroni, E. Figueroa-Feliciano, C. Tomei, C. Pira, Haiping Peng, Oliviero Cremonesi, M. Biassoni, D. Mayer, Jonathan Ouellet, G. Bari, Lindley Winslow, M. de Combarieu, Joseph A. Formaggio, A. Tsymbaliuk, Y. Mei, A. Armatol, K. M. Heeger, R. G. Huang, F. Mancarella, B. Paul, M. I. Martínez, G. Pessina, Jie Zhang, C. Nones, A. Puiu, A. Giuliani, B. Mauri, James Nikkel, Irene Nutini, G. Wang, H. Z. Huang, V. G. Yefremenko, G. Keppel, H. Khalife, E. Armengaud, D. Baudin, M. Beretta, S. L. Wagaarachchi, F. Collamati, Simone Capelli, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), CUPID, CROSS, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Armatol A., Armengaud E., Armstrong W., Augier C., Iii F.T.A., Azzolini O., Bandac I.C., Barabash A.S., Bari G., Barresi A., Baudin D., Bellini F., Benato G., Beretta M., Berge L., Bourgeois C., Biassoni M., Billard J., Boldrini V., Branca A., Brofferio C., Bucci C., Calvo-Mozota J.M., Camilleri J., Candela A., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cazes A., Celi E., Chang C., Chapellier M., Charrier A., Chiesa D., Clemenza M., Colantoni I., Collamati F., Copello S., Cremonesi O., Creswick R.J., Cruciani A., D'Addabbo A., D'Imperio G., Dafinei I., Danevich F.A., De Combarieu M., Deo M.D., Jesus M.D., De Marcillac P., Dell'Oro S., Domizio S.D., Dompe V., Drobizhev A., Dumoulin L., Fantini G., Faverzani M., Ferri E., Ferri F., Ferroni F., Figueroa-Feliciano E., Formaggio J., Franceschi A., Fu C., Fu S., Fujikawa B.K., Gascon J., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gras P., Gros M., Guerard E., Gutierrez T.D., Han K., Hansen E.V., Heeger K.M., Helis D.L., Huang H.Z., Huang R.G., Ianni A., Imbert L., Johnston J., Juillard A., Karapetrov G., Keppel G., Khalife H., Kobychev V.V., Kolomensky Y.G., Konovalov S.I., Liu Y., Loaiza P., Ma L., Madhukuttan M., Mancarella F., Mariam R., Marini L., Marnieros S., Martinez M., Maruyama R.H., Mauri B., Mayer D., Mei Y., Milana S., Misiak D., Napolitano T., Nastasi M., Navick X.-F., Nikkel J., Nipoti R., Nisi S., Nones C., Norman E.B., Novosad V., Nutini I., O'Donnell T., Olivier G., Olivieri E., Oriol C., Ouellet J.L., Pagan S., Pagliarone C., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pettinacci V., Pira C., Pirro S., Poda D.V., Polakovic T., Polischuk O.G., Pozzi S., Previtali E., Puiu A., Ressa A., Reynet D., Rizzoli R., Rosenfeld C., Sanglard V., Scarpaci J.A., Schmidt B., Sharma V., Shlegel V.N., Singh V., Sisti M., Speller D., Surukuchi P.T., Taffarello L., Tellier O., Tomei C., Tretyak V.I., Tsymbaliuk A., Velazquez M., Vetter K.J., Wagaarachchi S.L., Wang G., Wang L., Welliver B., Wilson J., Wilson K., Winslow L.A., Xue M., Yan L., Yang J., Yefremenko V., Yumatov V.I., Zarytskyy M.M., Zhang J., Zolotarova A.S., Zucchelli S., Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone F. T., I, Azzolini, O, Bandac, I, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Bourgeois, C, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Calvo-Mozota, J, Camilleri, J, Candela, A, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cremonesi, O, Creswick, R, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, Danevich, F, De Combarieu, M, Deo, M, Jesus, M, De Marcillac, P, Dell'Oro, S, Domizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fantini, G, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Figueroa-Feliciano, E, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, B, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Guerard, E, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Ianni, A, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, V, Kolomensky, Y, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, R, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, X, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, E, Novosad, V, Nutini, I, O'Donnell, T, Olivier, G, Olivieri, E, Oriol, C, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Poda, D, Polakovic, T, Polischuk, O, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Reynet, D, Rizzoli, R, Rosenfeld, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Tellier, O, Tomei, C, Tretyak, V, Tsymbaliuk, A, Velazquez, M, Vetter, K, Wagaarachchi, S, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, M, Zhang, J, Zolotarova, A, and Zucchelli, S
- Subjects
gas and liquid scintillators) ,Physics - Instrumentation and Detectors ,Accurate estimation ,Physics::Instrumentation and Detectors ,Bolometer ,Analytical chemistry ,Double-beta decay ,FOS: Physical sciences ,Cryogenic detector ,Radiopurity ,01 natural sciences ,030218 nuclear medicine & medical imaging ,law.invention ,Particle identification ,Particle identification methods ,03 medical and health sciences ,Particle identification method ,0302 clinical medicine ,CUORE ,law ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detector array ,Instrumentation ,Mathematical Physics ,Event triggered ,Physics ,Lithium molybdate ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Double-beta decay detectors ,scintillation and light emission processes (solid ,Double-beta decay detector ,Cryogenic detectors ,Scintillators ,Crystal scintillator ,Energy (signal processing) - Abstract
A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0\nu2\beta$ experiment CUPID. The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li$_{2}$$^{100}$MoO$_4$ bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV $\gamma$ line. The detection of scintillation light for each event triggered by the Li$_{2}$$^{100}$MoO$_4$ bolometer allowed for a full separation ($\sim$8$\sigma$) between $\gamma$($\beta$) and $\alpha$ events above 2 MeV. The Li$_{2}$$^{100}$MoO$_4$ crystal also shows a high internal radiopurity with $^{228}$Th and $^{226}$Ra activities of less than 3 and 8 $\mu$Bq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers for high-sensitivity searches for the $^{100}$Mo $0\nu2\beta$ decay in CROSS and CUPID projects., Comment: 19 pages, 7 figures, 1 table
- Published
- 2021
- Full Text
- View/download PDF
229. A Study on PbMoO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PbMoO}_4$$\end{document} Phonon-Scintillation Detection with MMC Readouts for a Neutrinoless Double Beta Decay Search.
- Author
-
Kim, H. L., So, J. H., Kim, Y. H., Kim, H. J., Nagorny, S. S., Kim, S. R., Kim, Y. D., Lee, M. H., and Shlegel, V. N.
- Abstract
The advanced Mo-based rare process experiment (AMoRE) is an international project searching for the neutrinoless double beta (0νββ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0\nu \beta \beta $$\end{document}) decay of 100\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$^{100}$$\end{document}Mo using low-temperature calorimetric detection of heat and light signals based on magnetic microcalorimeter (MMC) readouts. Li2MoO4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\hbox {Li}_2\hbox {MoO}_4$$\end{document} crystals have been considered as the main target crystals for the second phase of the AMoRE project, which aims to use 100 kg of 100\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$^{100}$$\end{document}Mo. However, the hygroscopicity of Li2MoO4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\hbox {Li}_2\hbox {MoO}_4$$\end{document} requires moistureless processes during surface treatment, storage, detector assembly, and installation. PbMoO4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\hbox {PbMoO}_4$$\end{document} crystals are nonhygroscopic and exhibit high scintillation efficiency, often leading to high particle discrimination power in the phonon channel via pulse-shape analysis and light/heat ratio variation. A low-temperature detector setup with a 1 cm3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\hbox {cm}^3$$\end{document} cubic crystal of PbMoO4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\hbox {PbMoO}_4$$\end{document} was prepared for simultaneous heat and light detection based on MMC readouts. After study of internal background control using archeological Pb, PbMoO4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\hbox {PbMoO}_4$$\end{document} crystal can be a promising candidate crystal. We present a feasibility study of PbMoO4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\hbox {PbMoO}_4$$\end{document} crystals for a 0νββ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0\nu \beta \beta $$\end{document} experiment. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
230. Growth of CdWO4 crystals by the low thermal gradient Czochralski technique and the properties of a (010) cleaved surface.
- Author
-
Galashov, E. N., Atuchin, V. V., Kozhukhov, A. S., Pokrovsky, L. D., and Shlegel, V. N.
- Subjects
- *
CRYSTAL growth , *CADMIUM compounds , *THERMAL gradient measurment , *SURFACE structure , *REFLECTION high energy electron diffraction , *PRECIPITATION (Chemistry) , *ATOMIC force microscopy - Abstract
The high-quality CdWO4 crystal of 80-90 mm in diameter and 180-200 mm long has been grown by Low Thermal Gradient Czochralski technique (LTG Cz). Large area atomically flat CdWO4(010) substrates have been prepared by cleavage. The CdWO4(010) surface is stable in the air up to 600 °C. At higher temperatures, the precipitation of WO3 and W19O55 oxides has been detected by RHEED. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
231. Precise measurement of $2\nu\beta\beta$ decay of $^{100}$Mo with the CUPID-Mo detection technology
- Author
-
Matthias Kleifges, S. Marnieros, A. S. Barabash, J. Kotila, Ezio Previtali, E. Guerard, B. Welliver, Lindley Winslow, P. de Marcillac, Claudia Tomei, A. S. Zolotarova, L. Marini, R. G. Huang, O. G. Polischuk, D. Misiak, Th. Redon, J. Billard, L. Cardani, Stefano Pirro, Federico Ferri, Yao Shen, J. Johnston, M. Pavan, P. Camus, V. Novati, B. K. Fujikawa, M. de Combarieu, L. Pattavina, Alain Benoit, B. Siebenborn, Yu. A. Borovlev, F. Charlieux, H. Z. Huang, S. V. Rozov, B. Paul, E. Armengaud, E. P. Makarov, L. Ma, Vasundhara Singh, F.A. Danevich, M. Briere, P. Loaiza, B. Schmidt, E. Elkhoury, M. De Jesus, A. Giuliani, V. I. Umatov, D. L. Helis, S. I. Konovalov, C. Rusconi, M. Gros, C. Nones, L. Dumoulin, V.N. Shlegel, K. Eitel, H. Khalife, Marc Weber, X. F. Navick, Francesca Bellini, G. Pessina, A. Leder, D.V. Poda, V.I. Tretyak, M. Beretta, P. Pari, L. Pagnanini, Yu G. Kolomensky, Ioan Dafinei, Jonathan Ouellet, C. Augier, Giovanni Benato, K. Schäffner, V. Sanglard, A. Juillard, Matias Velázquez, V. V. Kobychev, L. Vagneron, L. Bergé, E. Yakushev, L. Gironi, E. Olivieri, J. Gascon, A. Cazes, Ch. Bourgeois, V.B. Brudanin, M. Chapellier, N. Casali, M. Xue, V. D. Grigorieva, Haiping Peng, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Institut Rayonnement Matière de Saclay (IRAMIS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Armengaud, E, Augier, C, Barabash, A, Bellini, F, Benato, G, Benoit, A, Beretta, M, Berge, L, Billard, J, Borovlev, Y, Bourgeois, C, Briere, M, Brudanin, V, Camus, P, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Charlieux, F, de Combarieu, M, Dafinei, I, Danevich, F, De Jesus, M, Dumoulin, L, Eitel, K, Elkhoury, E, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Guerard, E, Helis, D, Huang, H, Huang, R, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Leder, A, Kotila, J, Loaiza, P, Ma, L, Makarov, E, de Marcillac, P, Marini, L, Marnieros, S, Misiak, D, Navick, X, Nones, C, Novati, V, Olivieri, E, Ouellet, J, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Previtali, E, Redon, T, Rozov, S, Rusconi, C, Sanglard, V, Schaffner, K, Schmidt, B, Shen, Y, Shlegel, V, Siebenborn, B, Singh, V, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velazquez, M, Weber, M, Welliver, B, Winslow, L, Xue, M, Yakushev, E, Zolotarova, A, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Cryogénie (NEEL - Cryo)
- Subjects
Lithium molybdate ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Analytical chemistry ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,nucl-ex ,01 natural sciences ,Atomic ,chemistry.chemical_compound ,Particle and Plasma Physics ,two-neutrino double-beta decay, scintillating bolometers ,0103 physical sciences ,ddc:530 ,Beta (velocity) ,Nuclear ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Nuclear Experiment ,Engineering (miscellaneous) ,physics.ins-det ,S076H2N ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,Molecular ,Beta decay ,Nuclear & Particles Physics ,3. Good health ,chemistry ,double beta decays, bolometers ,Underground laboratory ,Ground state - Abstract
We report the measurement of the two-neutrino double-beta ($2\nu\beta\beta$) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (\crystal) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory. From a total exposure of $42.235$ kg$\times$d, the half-life of $^{100}$Mo is determined to be $T_{1/2}^{2\nu}=[7.12^{+0.18}_{-0.14}\,\mathrm{(stat.)}\pm0.10\,\mathrm{(syst.)}]\times10^{18}$ years. This is the most accurate determination of the $2\nu\beta\beta$ half-life of $^{100}$Mo to date. We also confirm, with the statistical significance of $>3\sigma$, that the single-state dominance model of the $2\nu\beta\beta$ decay of $^{100}$Mo is favored over the high-state dominance model., Comment: 11 pages, 6 figures, 4 tables
- Published
- 2020
- Full Text
- View/download PDF
232. Production and characterisation of a PbMoO4 cryogenic detector from archaeological Pb
- Author
-
K. Schäffner, V. N. Shlegel, L. Pattavina, V. N. Zhdankov, L. Pagnanini, Stefano Nisi, S.S. Nagorny, C. Rusconi, S. Pirro, G. Pessina, Pattavina, L, Nagorny, S, Nisi, S, Pagnanini, L, Pessina, G, Pirro, S, Rusconi, C, Schäffner, K, Shlegel, V, and Zhdankov, V
- Subjects
Physics ,Crystal ,Nuclear and High Energy Physics ,Full width at half maximum ,Physics::Instrumentation and Detectors ,Double beta decay ,Detector ,Crystal growth ,Neutrino ,Archaeology ,Energy (signal processing) ,Particle identification - Abstract
We operated a $$\hbox {PbMoO}_4$$ scintillating cryogenic detector of 570 g, produced with archaeological lead. This compound features excellent low temperature characteristics in terms of light yield, 12 keV/MeV for $$\beta /\gamma $$ interactions, and FWHM energy resolution, 11.7 keV at 2.6 MeV. Furthermore, the detector allows for an effective particle identification by means of pulse shape analysis on the heat read-out channel. The implementation of innovative techniques and procedures for the purification of raw materials used for the crystal growth, and the highly-pure archaeological Pb, allowed for the production of large volume high-quality crystal. The overall characteristics of the detector operated at cryogenic temperatures makes $$\hbox {PbMoO}_4$$ an excellent compound for neutrino physics applications, especially neutrinoless double-beta studies.
- Published
- 2020
233. The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects
- Author
-
E. Armengaud, C. Augier, A. S. Barabash, F. Bellini, G. Benato, A. Benoît, M. Beretta, L. Bergé, J. Billard, Yu. A. Borovlev, Ch. Bourgeois, M. Briere, V. B. Brudanin, P. Camus, L. Cardani, N. Casali, A. Cazes, M. Chapellier, F. Charlieux, M. de Combarieu, I. Dafinei, F. A. Danevich, M. De Jesus, L. Dumoulin, K. Eitel, E. Elkhoury, F. Ferri, B. K. Fujikawa, J. Gascon, L. Gironi, A. Giuliani, V. D. Grigorieva, M. Gros, E. Guerard, D. L. Helis, H. Z. Huang, R. Huang, J. Johnston, A. Juillard, H. Khalife, M. Kleifges, V. V. Kobychev, Yu. G. Kolomensky, S. I. Konovalov, A. Leder, P. Loaiza, L. Ma, E. P. Makarov, P. de Marcillac, L. Marini, S. Marnieros, D. Misiak, X. -F. Navick, C. Nones, V. Novati, E. Olivieri, J. L. Ouellet, L. Pagnanini, P. Pari, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, S. Pirro, D. V. Poda, O. G. Polischuk, E. Previtali, Th. Redon, S. Rozov, C. Rusconi, V. Sanglard, K. Schäffner, B. Schmidt, Y. Shen, V. N. Shlegel, B. Siebenborn, V. Singh, S. Sorbino, C. Tomei, V. I. Tretyak, V. I. Umatov, L. Vagneron, M. Velázquez, M. Weber, B. Welliver, L. Winslow, M. Xue, E. Yakushev, A. S. Zolotarova, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et modélisation des milieux condensés (LPM2C), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Cryogénie (NEEL - Cryo), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Armengaud, E, Augier, C, Barabash, A, Bellini, F, Benato, G, Benoît, A, Beretta, M, Bergé, L, Billard, J, Borovlev, Y, Bourgeois, C, Briere, M, Brudanin, V, Camus, P, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Charlieux, F, de Combarieu, M, Dafinei, I, Danevich, F, De Jesus, M, Dumoulin, L, Eitel, K, Elkhoury, E, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Guerard, E, Helis, D, Huang, H, Huang, R, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Leder, A, Loaiza, P, Ma, L, Makarov, E, de Marcillac, P, Marini, L, Marnieros, S, Misiak, D, Navick, X, Nones, C, Novati, V, Olivieri, E, Ouellet, J, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Previtali, E, Redon, T, Rozov, S, Rusconi, C, Sanglard, V, Schäffner, K, Schmidt, B, Shen, Y, Shlegel, V, Siebenborn, B, Singh, V, Sorbino, S, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velázquez, M, Weber, M, Welliver, B, Winslow, L, Xue, M, Yakushev, E, and Zolotarova, A
- Subjects
double-beta decay: neutrinoless ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,energy resolution ,Radiopurity ,nucl-ex ,01 natural sciences ,7. Clean energy ,Atomic ,law.invention ,High Energy Physics - Experiment ,Particle identification ,High Energy Physics - Experiment (hep-ex) ,CUORE ,Particle and Plasma Physics ,High performance ,neutrinoless double beta decay ,Majorana neutrino ,cryogenic calorimeters ,law ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Scintillating bolometer ,Nuclear Experiment (nucl-ex) ,physics.ins-det ,Nuclear Experiment ,Low background ,Physics ,Quantum Physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,molybdenum: oxygen ,Full width at half maximum ,cryogenics ,lithium ,100 Mo ,ddc:620 ,photon: yield ,performance ,Double-beta decay ,FOS: Physical sciences ,Cryogenic detector ,lcsh:Astrophysics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,crystal ,Nuclear physics ,bolometer ,double-beta decay: (0neutrino) ,Double beta decay ,lcsh:QB460-466 ,0103 physical sciences ,germanium: detector ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Nuclear ,Sensitivity (control systems) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Engineering (miscellaneous) ,Engineering & allied operations ,scintillation counter ,detector: design ,Lithium molybdate ,Scintillation ,molybdenum: nuclide ,010308 nuclear & particles physics ,hep-ex ,Bolometer ,Molecular ,bibliography ,Enriched materials ,sensitivity ,calibration ,Scintillator ,Automatic Keywords ,lcsh:QC770-798 ,Energy (signal processing) ,acceptance - Abstract
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ($0\nu\beta\beta$) of $^{100}$Mo. In this article, we detail the CUPID-Mo detector concept, assembly, installation in the underground laboratory in Modane in 2018, and provide results from the first datasets. The demonstrator consists of an array of 20 scintillating bolometers comprised of $^{100}$Mo-enriched 0.2 kg Li$_2$MoO$_4$ crystals. The detectors are complemented by 20 thin cryogenic Ge bolometers acting as light detectors to distinguish $\alpha$ from $\gamma$/$\beta$ events by the detection of both heat and scintillation light signals. We observe good detector uniformity, facilitating the operation of a large detector array as well as excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Based on the observed energy resolutions and light yields a separation of $\alpha$ particles at much better than 99.9\% with equally high acceptance for $\gamma$/$\beta$ events is expected for events in the region of interest for $^{100}$Mo $0\nu\beta\beta$. We present limits on the crystals' radiopurity ($\leq$3 $\mu$Bq/kg of $^{226}$Ra and $\leq$2 $\mu$Bq/kg of $^{232}$Th). Based on these initial results we also discuss a sensitivity study for the science reach of the CUPID-Mo experiment, in particular, the ability to set the most stringent half-life limit on the $^{100}$Mo $0\nu\beta\beta$ decay after half a year of livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology - developed in the framework of the LUMINEU project - selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale cryogenic $0\nu\beta\beta$ experiment., Comment: 15 pages, 18 figures, 3 tables; to be submitted to EPJC
- Published
- 2020
- Full Text
- View/download PDF
234. National primary special standard for the Vickers metal hardness scale.
- Author
-
Aslanyan, E., Pivovarov, V., Aslanyan, A., Gavrilkin, S., and Shlegel, V.
- Subjects
- *
METAL hardness , *MECHANICAL properties of metals , *HARDNESS , *STANDARDS , *MECHANICAL loads - Abstract
Studies aimed at improving the national primary standard for the hardness of metals on the Vickers scale are reported. The range of applied loads is extended from 0.098 to 0.0098 N. A basis is established for the development of a new national hardness standard with nanoindentation at loads of less than 0.0098 N. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
235. ESR and luminescence of ZnWO crystals activated by gadolinium ions.
- Author
-
Ryadun, A., Galashov, E., Nadolinny, V., and Shlegel, V.
- Subjects
- *
ELECTRON paramagnetic resonance spectroscopy , *LUMINESCENCE spectroscopy , *TUNGSTATES , *ACTIVATION (Chemistry) , *RARE earth ions , *SCINTILLATORS , *TEMPERATURE effect , *RADIATION hardening (Electronics) - Abstract
The crystals of zinc tungstate (ZTO) are a radiation-hardened matrix and are widely used as scintillators for high energy radiation. Therefore, it is interesting to study the possibility of introducing gadolinium ions into this structure to obtain the lasing properties. In order to activate ZTO crystals by gadolinium ions, 0.5 mol.% of GdO is added to the load. High-quality large crystals of ZTO are produced. The spectra of optical transmission, luminescence excitation, and luminescence are measured at room temperature. It is shown that the introduction of gadolinium ions does not result in a shift of the main luminescence band of the ZTO crystals. The analysis of the ESR spectra and their modeling enables the calculation of spin-Hamiltonian parameters. It is shown that the observed spectrum depends on the state of Gd ions with S = 7/2 and is well described by the spin-Hamiltonian parameters g = 1.9835, g = 1.9685, g = 1.9688 and D = 644.88 Gs, E = 161.49 Gs. Directions of the principal values of the D tensor are determined; they reflect a strong distortion of the nearest-neighbor oxygen environment. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
236. Search for double-β decay processes in 106Cd with the help of a 106CdWO4 crystal scintillator.
- Author
-
Belli, P., Bernabei, R., Boiko, R. S., Brudanin, V. B., Cappella, F., Caracciolo, V., Cerulli, R., Chemyak, D. M., Danevich, F. A., d'Angelo, S., Galashov, E. N., Incicchitti, A., Kobychev, V. V., Laubenstein, M., Mokina, V. M., Poda, D. V., Podviyanuk, R. B., Polischuk, O. G., Shlegel, V. N., and Stenin, Yu. G.
- Subjects
- *
DOUBLE beta decay , *CADMIUM isotopes , *SCINTILLATORS , *ELECTRON capture , *CADMIUM tungstate crystals , *QUASIPARTICLES , *APPROXIMATION theory , *RADIOACTIVE decay - Abstract
A search for double β processes in 106Cd was carried out at the Gran Sasso National Laboratories of the INFN (Italy) with the help of a 106CdWO4 crystal scintillator (215 g) enriched in 106Cd up to 66%. After 6590 h of data taking, new improved half-life limits on the double β decay processes in 106Cd were established at the level of 1019-1021 yr; in particular, T2ν∊β+1/2 ≥ 2.1 × 1020 yr, T2ν∊β1/2 ≥ 4.3 × 1020 yr, and T0ν2∊1/2 ≥ 1.0 × 1021 yr. The resonant neutrinoless double-electron captures to the 2718-, 2741-, and 2748-keV excited states of 106Pd are restricted to T0ν2K1/2 ≥ 4.3 × 1020 yr, T0νKL11/2 ≥ 9.5 × 1020 yr, and T0νKL31/2 ≥ 4.3 × 1020 yr, respectively (all limits at 90% confidence level). A possible resonant enhancement of the 0ν2∊ processes is estimated in the framework of the quasiparticle random phase approximation (QRPA) approach. Radioactive contamination of the 106CdWO4 crystal scintillator is reported. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
237. Precise measurement of 2ν2$\beta$ decay of $^{100}$Mo with Li$_2$MoO$_4$ low temperature detectors: Preliminary results
- Author
-
S. Sorbino, C. Nones, G. Pessina, Yu. A. Borovlev, J. Kotila, L. Dumoulin, E. Queguiner, A. S. Barabash, M. Chapellier, E. Previtali, O. G. Polischuk, M. Xue, J. Gascon, X-F. Navick, P. Pari, B. Schmidt, M. Kleifges, L. Pagnanini, L. Pattavina, F. Bellini, V.V. Kobychev, N. Besson, M. Pavan, C. Tomei, S. Marnieros, H. Z. Huang, A. Cazes, S. Pirro, B. Paul, R.Huang Lbnl, Federico Ferri, R. Maisonobe, K. Schäffner, M. Gros, Ch. Bourgeois, V. I. Tretyak, M. De Jesus, K. Eitel, H. Khalife, P. de Marcillac, L. Vagneron, M. de Combarieu, E. Olivieri, E. Guerard, C. Rusconi, E. P. Makarov, A. Beno, V.N. Shlegel, D. V. Poda, Yao Shen, J. Johnston, Yu. G. Kolomensky, L. Gironi, J. Billard, A. Giuliani, S. I. Konovalov, N. Casali, I. Dafinei, E. Armengaud, V. B. Brudanin, F. Charlieux, T. Redon, C. Augier, Laura Cardani, A. Juillard, Haiping Peng, Lindley Winslow, Matias Velázquez, B.F. Fujikawa, F.A. Danevich, M. Beretta, V. I. Umatov, M. Vignati, A. Leder, E. Yakushev, M. Weber, S. V. Rozov, V. Novati, V.D. Grigorieva, Ph. Camus, A. S. Zolotarova, P. Loaiza, Luc Bergé, B. Siebenborn, V. Sanglard, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut Rayonnement Matière de Saclay (IRAMIS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Hélium : du fondamental aux applications (NEEL - HELFA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Cryogénie (NEEL - Cryo), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Armengaud, E, Augier, C, Barabash, A, Bellini, F, Beno, A, Beretta, M, Berge, L, Besson, N, Billard, J, Borovlev, Y, Bourgeois, C, Brudanin, V, Camus, P, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Charlieux, F, De Combarieu, M, Danevich, F, Dafinei, I, De Jesus, M, Dumoulin, L, Eitel, K, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Guerard, E, Huang, H, Huang, R, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Leder, A, Kotila, J, Loaiza, P, Maisonobe, R, Makarov, E, De Marcillac, P, Marnieros, S, Navick, X, Nones, C, Novati, V, Olivieri, E, Pagnanini, L, Pari, P, Pattavina, L, Pavan, M, Paul, B, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Previtali, E, Queguiner, E, Redon, T, Rozov, S, Rusconi, C, Sanglard, V, Schaffner, K, Shen, Y, Schmidt, B, Shlegel, V, Siebenborn, B, Sorbino, S, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velazquez, M, Vignati, M, Weber, M, Winslow, L, Xue, M, Yakushev, E, and Zolotarova, A
- Subjects
Lithium molybdate ,Materials science ,energy: ground state ,Analytical chemistry ,lifetime: measured ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,background: low ,bolometer ,temperature: low ,law ,Double beta decay ,0103 physical sciences ,double-beta decay: (2neutrino) ,010306 general physics ,detector: temperature ,molybdenum: nuclide ,010308 nuclear & particles physics ,Bolometer ,Detector ,Beta decay ,molybdenum: semileptonic decay ,chemistry ,Underground laboratory ,scintillation counter: crystal ,double beta decay, scintillating bolometers ,Ground state ,experimental results - Abstract
International audience; The half-life of 100Mo relatively to the 2ν2β decay to the ground state of 100Ru was measured as T1/2 = (6.99±0.15) × 1018 yr with the help of enriched in 100Mo lithium molybdate scintillating bolometers in the EDELWEISS-III low background set-up at the Modane underground laboratory. This is the most accurate value of the 2ν2β half-life of 100Mo.
- Published
- 2019
- Full Text
- View/download PDF
238. Specific features of the phase formation, synthesis, and growth of ZnMoO crystals.
- Author
-
Galashov, E., Galkin, P., Plusnin, P., and Shlegel, V.
- Subjects
- *
ZINC alloys , *METAL crystal growth , *PHASE transitions , *SOLID phase extraction , *THERMAL gradient measurment , *STOICHIOMETRY - Abstract
The ZnO-MoO phase diagram in the range of ZnO compositions from 0.95 to 1.05 mol % is refined by differential scanning calorimetry. Data on crystal stoichiometry are obtained using the weighting method by reducing ZnMoO in a hydrogen atmosphere. The specific features of solid-phase synthesis of ZnMoO are studied, and its heat of fusion is measured. The modes of solid-phase synthesis and growth of ZnMoO crystals are optimized. Some experimental data on the ZnMoO crystal growth in the [001] direction by the low-thermal gradient Czochralski method are presented. Crystals with a cross section of ∼50 × 50 mm, a length of 160 mm, and a weight up to 1 kg have been obtained. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
239. Development of $^{100}$Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search
- Author
-
Armengaud, E., Augier, C., Barabash, A.S., Beeman, J.W., Bekker, T.B., Bellini, F., Benoît, A., Bergé, L., Bergmann, T., Billard, J., Boiko, R.S., Broniatowski, A., Brudanin, V., Camus, P., Capelli, S., Cardani, L., Casali, N., Cazes, A., Chapellier, M., Charlieux, F., Chernyak, D.M., De Combarieu, M., Coron, N., Danevich, F.A., Dafinei, I., De Jesus, M., Devoyon, L., Di Domizio, S., Dumoulin, L., Eitel, K., Enss, C., Ferroni, F., Fleischmann, A., Foerster, N., Gascon, J., Gastaldo, L., Gironi, L., Giuliani, A., Grigorieva, V.D., Gros, M., Hehn, L., Hervé, S., Humbert, V., Ivannikova, N.V., Ivanov, I.M., Jin, Y., Juillard, A., Kleifges, M., Kobychev, V.V., Konovalov, S.I., Koskas, F., Kozlov, V., Kraus, H., Kudryavtsev, V.A., Laubenstein, M., Le Sueur, H., Loidl, M., Magnier, P., Makarov, E.P., Mancuso, M., De Marcillac, P., Marnieros, S., Marrache-Kikuchi, C., Nagorny, S., Navick, X-F., Nikolaichuk, M.O., Nones, C., Novati, V., Olivieri, E., Pagnanini, L., Pari, P., Pattavina, L., Pavan, M., Paul, B., Penichot, Y., Pessina, G., Piperno, G., Pirro, S., Plantevin, O., Poda, D.V., Queguiner, E., Redon, T., Rodrigues, M., Rozov, S., Rusconi, C., Sanglard, V., Schäffner, K., Scorza, S., Shlegel, V.N., Siebenborn, B., Strazzer, O., Tcherniakhovski, D., Tomei, C., Tretyak, V.I., Umatov, V.I., Vagneron, L., Vasiliev, Ya.V., Velazquez, M., Vignati, M., Weber, M., Yakushev, E., Zolotarova, A.S., Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay-Direction de Recherche Technologique (CEA) (DRT (CEA)), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Armengaud, E, Augier, C, Barabash, A, Beeman, J, Bekker, T, Bellini, F, Benoît, A, Bergé, L, Bergmann, T, Billard, J, Boiko, R, Broniatowski, A, Brudanin, V, Camus, P, Capelli, S, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Charlieux, F, Chernyak, D, de Combarieu, M, Coron, N, Danevich, F, Dafinei, I, Jesus, M, Devoyon, L, Domizio, S, Dumoulin, L, Eitel, K, Enss, C, Ferroni, F, Fleischmann, A, Foerster, N, Gascon, J, Gastaldo, L, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Hehn, L, Hervé, S, Humbert, V, Ivannikova, N, Ivanov, I, Jin, Y, Juillard, A, Kleifges, M, Kobychev, V, Konovalov, S, Koskas, F, Kozlov, V, Kraus, H, Kudryavtsev, V, Laubenstein, M, Sueur, H, Loidl, M, Magnier, P, Makarov, E, Mancuso, M, de Marcillac, P, Marnieros, S, Marrache-Kikuchi, C, Nagorny, S, Navick, X, Nikolaichuk, M, Nones, C, Novati, V, Olivieri, E, Pagnanini, L, Pari, P, Pattavina, L, Pavan, M, Paul, B, Penichot, Y, Pessina, G, Piperno, G, Pirro, S, Plantevin, O, Poda, D, Queguiner, E, Redon, T, Rodrigues, M, Rozov, S, Rusconi, C, Sanglard, V, Schäffner, K, Scorza, S, Shlegel, V, Siebenborn, B, Strazzer, O, Tcherniakhovski, D, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Vasiliev, Y, Velázquez, M, Vignati, M, Weber, M, Yakushev, E, Zolotarova, A, Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Institut de Physique Nucléaire de Lyon ( IPNL ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Néel ( NEEL ), Université Grenoble Alpes [Saint Martin d'Hères]-Centre National de la Recherche Scientifique ( CNRS ), Centre de Sciences Nucléaires et de Sciences de la Matière ( CSNSM ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut d'astrophysique spatiale ( IAS ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Intégration des Systèmes et des Technologies ( LIST ), Institut de Chimie de la Matière Condensée de Bordeaux ( ICMCB ), Université de Bordeaux ( UB ) -Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique ( CNRS ), Kurchatov NBIC Centre, National Research Centre, Kurchatov Institute, Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Sobolev Institute of Geology and Mineralogy [Novosibirsk], Siberian Branch of the Russian Academy of Sciences (SB RAS), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Hélium : du fondamental aux applications (NEEL - HELFA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Karlsruhe Institute of Technology (KIT), Kiev Institute for Nuclear Research, Joint Institute for Nuclear Research (JINR), Cryogénie (NEEL - Cryo), Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Istituto Nazionale di Fisica Nucleare [Sezione di Roma 1] (INFN), Istituto Nazionale di Fisica Nucleare, Kiev Institute for Nuclear Research (KINR), Ukrainian Academy of Sciences, Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Università degli studi di Genova = University of Genoa (UniGe), Kirchhoff Institute for Physics, Universität Heidelberg [Heidelberg] = Heidelberg University, Universitá degli Studi dell’Insubria = University of Insubria [Varese] (Uninsubria), University of Oxford, University of Sheffield [Sheffield], Laboratori Nazionali del Gran Sasso (LNGS), Istituto Nazionale di Fisica Nucleare (INFN), Laboratoire National Henri Becquerel (LNHB), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département d'instrumentation Numérique (DIN (CEA-LIST)), Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), Laboratori Nazionali di Frascati (LNF), and National Research Centre 'Kurchatov Institute': Petersburg Nuclear Physics Institute
- Subjects
Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,energy resolution ,Double-beta decay ,FOS: Physical sciences ,fabrication ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,high optical quality ,quality: optical ,engineering (miscellaneous) ,physics and astronomy (miscellaneous) ,100 Mo -enriched scintillating bolometers ,boule recrystallization ,lithium molybdate detectors ,23.40.-s ,bolometer ,double-beta decay: (0neutrino) ,ddc:530 ,Scintillating bolometer ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear Experiment (nucl-ex) ,Engineering (miscellaneous) ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment ,Enriched $^{100}$Mo ,Zinc molybdate ,S076H2N ,Lithium molybdate ,CUORE ,molybdenum: nuclide ,Physics ,zinc ,Instrumentation and Detectors (physics.ins-det) ,29.40.Mc ,molybdenum: oxygen ,Physics and Astronomy ,lithium ,scintillation counter: crystal ,performance - Abstract
This paper reports on the development of a technology involving $^{100}$Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ($\sim$1~kg), high optical quality, radiopure $^{100}$Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2--0.4~kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the $Q$-value of the double-beta transition of $^{100}$Mo (3034~keV) is 4--6~keV FWHM. The rejection of the $\alpha$-induced dominant background above 2.6~MeV is better than 8$\sigma$. Less than 10~$\mu$Bq/kg activity of $^{232}$Th ($^{228}$Th) and $^{226}$Ra in the crystals is ensured by boule recrystallization. The potential of $^{100}$Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10~kg$\times$d exposure: the two neutrino double-beta decay half-life of $^{100}$Mo has been measured with the up-to-date highest accuracy as $T_{1/2}$ = [6.90 $\pm$ 0.15(stat.) $\pm$ 0.37(syst.)] $\times$ 10$^{18}$~yr. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of $^{100}$Mo., Comment: 25 pages, 12 figures, 8 tables; submitted to EPJC
- Published
- 2017
- Full Text
- View/download PDF
240. Development and underground test of radiopure ZnMoO4 scintillating bolometers for the LUMINEU 0 nu 2 beta project
- Author
-
J. Gascon, R. J. Walker, O. Plantevin, A. A. Drillien, V.N. Shlegel, M. Gros, S. Marnieros, K. Eitel, V. Kozlov, Christian Enss, M. Kleifges, B. Paul, T. de Boissière, C. Nones, C. Augier, L. Hehn, E. Olivieri, E. Yakushev, P. Coulter, C. Kéfélian, V. Humbert, G. Gerbier, M. Rodrigues, M. Chapellier, N. Foerster, A. Giuliani, S. Scorza, V. B. Brudanin, G. Heuermann, T. Redon, F. Koskas, L. Dumoulin, P. de Marcillac, Claire A. Marrache-Kikuchi, P. Magnier, S. Hervé, N. Fourches, L. Vagneron, H. Kraus, V.N. Zhdankov, A. Menshikov, M.-C. Piro, Max Robinson, Y. Penichot, X-F. Navick, Matias Velázquez, I.M. Ivanov, V. V. Kobychev, P. Pari, A. Broniatowski, R. Decourt, A. Cazes, D. Filosofov, A. Fleischmann, Oudomsack Viraphong, O. Strazzer, Denis Tcherniakhovski, G. Pessina, D. Gray, L. Gastaldo, Noël Coron, M. Loidl, Ph. Camus, L. Bergé, Alain Benoit, E.P. Makarov, V. A. Kudryavtsev, D.M. Chernyak, S. Henry, E. Armengaud, L. Devoyon, B. Schmidt, F.A. Danevich, Ya.V. Vasiliev, J. Blümer, M. Mancuso, R.S. Boiko, M. De Jesus, M. Tenconi, S. V. Rozov, Marc Weber, D.V. Poda, V.I. Tretyak, H. Kluck, T. Bergmann, Q. Arnaud, H. Le Sueur, X. Zhang, V. Sanglard, B. Siebenborn, A. Juillard, S.G. Nasonov, F. Charlieux, L. Torres, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Hélium : du fondamental aux applications (HELFA), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Kiev Institute for Nuclear Research (KINR), Ukrainian Academy of Sciences, Karlsruhe Institute of Technology (KIT), Dzhelepov Laboratory of Nuclear Problems [Dubna] (DLNP), Joint Institute for Nuclear Research (JINR), Cryogénie (Cryo), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Oxford [Oxford], Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Karlsruher Institut für Technologie (KIT), Kirchhoff Institute for Physics, Universität Heidelberg [Heidelberg], Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), University of Sheffield [Sheffield], Laboratoire National Henri Becquerel (LNHB), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Istituto Nazionale di Fisica Nucleare, Sezione di Milano (INFN), Istituto Nazionale di Fisica Nucleare (INFN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), CML Ltd, ANR-12-BS05-0004,LUMINEU,Expérience souterraine avec détecteurs luminescents de molybdate de zinc pour l'étude de la masse et la nature des neutrinos(2012), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Cryogénie (NEEL - Cryo), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), University of Oxford, Universität Heidelberg [Heidelberg] = Heidelberg University, Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département d'instrumentation Numérique (DIN (CEA-LIST)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), HELFA - Hélium : du fondamental aux applications, Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), CSNSM PS1, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Laboratory of Particle Physics (JINR-DUBNA), Joint Institute for Nuclear Research, Cryo - Cryogénie, Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Technologique (CEA) (DRT (CEA)), Institut Rayonnement Matière de Saclay (IRAMIS), Istituto Nazionale di Fisica Nucleare [Milano] (INFN), Joint Institute for Nuclear Research - Dubna, ANR-12-BS05-004,LUMINEU,Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature, Armengaud, E, Arnaud, Q, Augier, C, Benoit, A, Berge, L, Boiko, R, Bergmann, T, Blumer, J, Broniatowski, A, Brudanin, V, Camus, P, Cazes, A, Chapellier, M, Charlieux, F, Chernyak, D, Coron, N, Coulter, P, Danevich, F, De Boissiere, T, Decourt, R, Jesus, M, Devoyon, L, Drillien, A, Dumoulin, L, Eitel, K, Enss, C, Filosofov, D, Fleischmann, A, Foerster, N, Fourches, N, Gascon, J, Gastaldo, L, Gerbier, G, Giuliani, A, Gray, D, Gros, M, Hehn, L, Henry, S, Herve, S, Heuermann, G, Humbert, V, Ivanov, I, Juillard, A, Kefelian, C, Kleifges, M, Kluck, H, Kobychev, V, Koskas, F, Kozlov, V, Kraus, H, Kudryavtsev, V, Sueur, H, Loidl, M, Magnier, P, Makarov, E, Mancuso, M, De Marcillac, P, Marnieros, S, Marrache-Kikuchi, C, Menshikov, A, Nasonov, S, Navick, X, Nones, C, Olivieri, E, Pari, P, Paul, B, Penichot, Y, Pessina, G, Piro, M, Plantevin, O, Poda, D, Redon, T, Robinson, M, Rodrigues, M, Rozov, S, Sanglard, V, Schmidt, B, Scorza, S, Shlegel, V, Siebenborn, B, Strazzer, O, Tcherniakhovski, D, Tenconi, M, Torres, L, Tretyak, V, Vagneron, L, Vasiliev, Y, Velazquez, M, Viraphong, O, Walker, R, Weber, M, Yakushev, E, Zhang, X, and Zhdankov, V
- Subjects
gas and liquid scintillators) ,Zinc molybdate ,Cryogenic detector ,EDELWEISS ,Scintillator ,01 natural sciences ,Nuclear physics ,CRYSTAL SCINTILLATORS ,chemistry.chemical_compound ,Double beta decay ,0103 physical sciences ,Dilution refrigerator ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Instrumentation ,GRADIENT CZOCHRALSKI TECHNIQUE ,Mathematical Physics ,Physics ,TUNGSTATES ,010308 nuclear & particles physics ,Hybrid detector ,DOUBLE-BETA-DECAY ,Hybrid detectors ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Double-beta decay detectors ,Double-beta decay detector ,DARK-MATTER SEARCH ,scintillation and light emission processes (solid ,RADIOACTIVE CONTAMINATION ,Cryogenic detectors ,chemistry ,Scintillators ,LUMINESCENCE ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,PARTICLE PHYSICS ,GROWTH ,SINGLE-CRYSTALS ,Neutrino ,Isotopes of thorium ,Radioactive decay - Abstract
International audience; The LUMINEU (Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature) project envisages a high-sensitivity search for neutrinoless double beta (0 nu 2 beta) decay of Mo-100 with the help of scintillating bolometers based on zinc molybdate (ZnMoO4) crystals. One of the crucial points for the successful performance of this experiment is the development of a protocol for producing high quality large mass ZnMoO4 crystal scintillators with extremely high internal radiopurity. Here we report a significant progress in the development of large volume ZnMoO4 crystalline boules (with mass up to 1 kg) from deeply purified materials. We present and discuss the results achieved with two ZnMoO4 samples (with mass of about 0.3 kg each): one is a precursor of the LUMINEU project, while the other one was produced in the framework of LUMINEU with an improved purification / crystallization procedure. The two crystals were measured deep underground as scintillating bolometers in the EDELWEISS dilution refrigerator at the Laboratoire Souterrain de Modane (France) protected by a rock overburden corresponding to 4800 m w.e. The results indicate that both tested crystals are highly radiopure. However, the advanced LUMINEU sample shows a clear improvement with respect to the precursor, exhibiting only a trace internal contamination related with Po-210 at the level of 1 mBq/kg, while the activity of Ra-226 and Th-228 is below 0.005 mBq/kg. This demonstrates that the LUMINEU purification and crystal-growth procedures are very efficient and leads to radiopurity levels which exceedingly satisfy not only the LUMINEU goals but also the requirements of a next-generation 0 nu 2 beta experiment.
- Published
- 2015
- Full Text
- View/download PDF
241. An Aboveground Pulse-Tube-Based Bolometric Test Facility for the Validation of the LUMINEU ZnMoO4 Crystals
- Author
-
Mancuso, M., Chernyak, D.M., Danevich, F.A., Dumoulin, L., Giachero, A., Giuliani, A., Godfrin, Henri, Gotti, C., Ivanov, I.M., Maino, M., Makarov, E., Olivieri, E., Pessina, G., Shlegel, V.N., Sultan, Ahmad, Tenconi, M., Vasiliev, Ya., Mancuso, M, Chernyak, D, Danevich, F, Dumoulin, L, Giachero, A, Giuliani, A, Godfrin, H, Gotti, C, Ivanov, I, Maino, M, Makarov, E, Olivieri, E, Pessina, G, Shlegel, V, Sultan, A, Tenconi, M, Vasiliev, Y, CSNSM PS1, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Institute for Nuclear Research of NAS of Ukraine, National Academy of Sciences of Ukraine (NASU), Istituto Nazionale di Fisica Nucleare, Sezione di Milano (INFN), Istituto Nazionale di Fisica Nucleare (INFN), Dipartimento di Matematica e Applicazioni [Milano], Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Universitá degli Studi dell’Insubria, Ultra-basses températures (UBT), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), and Siberian Branch of the Russian Academy of Sciences (SB RAS)
- Subjects
ZnMoO4 crystals ,Condensed Matter Physics ,Double beta decay ,Bolometrique technique ,Neutrino mass ,Bolometric technique ,Low background ,Scintillation ,Atomic and Molecular Physics, and Optics ,Materials Science (all) ,Atomic and Molecular Physics ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,and Optics ,Scintillating Bolometers, Double Beta Decay - Abstract
The LUMINEU project aims at developing a pilot double beta decay experiment using scintillating bolometers based on ZnMoO4 crystals enriched in 100Mo. In the next months regular deliveries of large-mass ZnMoO 4 crystals are expected from the Nikolaev Institute of Inorganic Chemistry (Novosibirsk, Russia). It is therefore crucial for the LUMINEU program to test systematically and in real time these samples in terms of bolometric properties, light yield and internal radioactive contamination. In this paper we describe an aboveground cryogenic facility based on a dilution refrigerator coupled to a pulse-tube cooler capable performing these measurements. A 23.8 g ZnMoO4 crystal was fully characterised in this setup. We show also that macro-bolometers can be operated with high signal-to-noise ratio in liquid-free dilution refrigerators. © 2014 Springer Science+Business Media New York.
- Published
- 2014
- Full Text
- View/download PDF
242. Performances of a large mass ZnMoO4 scintillating bolometer for a next generation 0νDBD experiment
- Author
-
S. S. Nagorny, C. Brofferio, C. Rusconi, S. Pirro, G. Piperno, F. Bellini, S. Di Domizio, Laura Cardani, M. Vignati, L. Pattavina, E. Previtali, Jeffrey W. Beeman, M. Pavan, I. Dafinei, F. Orio, F. Ferroni, C. Tomei, N. Casali, E. Gorello, G. Pessina, Oliviero Cremonesi, L. Gironi, E.N. Galashov, V.N. Shlegel, Beeman, J, Bellini, F, Brofferio, C, Cardani, L, Casali, N, Cremonesi, O, Dafinei, I, Di Domizio, S, Ferroni, F, Gorello, E, Galashov, E, Gironi, L, Nagorny, S, Orio, F, Pavan, M, Pattavina, L, Pessina, G, Piperno, G, Pirro, S, Previtali, E, Rusconi, C, Shlegel, V, Tomei, C, and Vignati, M
- Subjects
Physics and Astronomy (miscellaneous) ,Zinc molybdate ,Atomic ,7. Clean energy ,01 natural sciences ,law.invention ,Nuclear physics ,Crystal ,chemistry.chemical_compound ,Particle and Plasma Physics ,law ,Double beta decay ,0103 physical sciences ,Nuclear ,Beta (velocity) ,010306 general physics ,Engineering (miscellaneous) ,Physics ,Quantum Physics ,Scintillation ,010308 nuclear & particles physics ,Bolometer ,Molecular ,Nuclear & Particles Physics ,Full width at half maximum ,chemistry ,Molibdenum, double beta decay, scintillating bolometer - Abstract
We present the performances of a 330g zinc molybdate (ZnMoO 4) crystal working as scintillating bolometer as a possible candidate for a next generation experiment to search for neutrinoless double beta decay of 100Mo. The energy resolution, evaluated at the 2615keV γ-line of 208Tl, is 6.3keV FWHM. The internal radioactive contaminations of the ZnMoO 4 were evaluated as
- Published
- 2012
- Full Text
- View/download PDF
243. ZnMoO4: A promising bolometer for neutrinoless double beta decay searches
- Author
-
E. N. Galashov, F. Orio, V. N. Shlegel, Simone Capelli, Ioan Dafinei, S. Di Domizio, F. Bellini, G. Piperno, L. Cardani, Jeffrey W. Beeman, Stefano Pirro, Claudia Tomei, M. Vignati, F. Ferroni, Ya.V. Vasilyev, G. Pessina, L. Gironi, L. Pattavina, N. Casali, Beeman, J, Bellini, F, Capelli, S, Cardani, L, Casali, N, Dafinei, I, Di Domizio, S, Ferroni, F, Galashov, E, Gironi, L, Orio, F, Pattavina, L, Pessina, G, Piperno, G, Pirro, S, Shlegel, V, Vasilyev, Y, Tomei, C, and Vignati, M
- Subjects
Scintillating crystal ,Background level ,Physics::Instrumentation and Detectors ,Monte Carlo method ,FOS: Physical sciences ,01 natural sciences ,7. Clean energy ,law.invention ,Nuclear physics ,law ,Double beta decay ,Thermal signal ,0103 physical sciences ,Thermal ,Nuclear Experiment (nucl-ex) ,Energy resolution ,010306 general physics ,Nuclear Experiment ,Line (formation) ,Physics ,Scintillation ,010308 nuclear & particles physics ,Bolometer ,Resolution (electron density) ,Monte Carlo Simulation ,Astronomy and Astrophysics ,Bolometers ,Thermal pulse ,Full width at half maximum ,Scintillation light ,znmoo 4 ,Radioactive contamination ,bolometers ,double beta decay ,ZnMoO4 ,Enriched Zn ,Scatter plot ,FIS/04 - FISICA NUCLEARE E SUBNUCLEARE - Abstract
We investigate the performances of two ZnMoO4 scintillating crystals operated as bolometers, in view of a next generation experiment to search the neutrinoless double beta decay of Mo-100. We present the results of the alpha vs beta/gamma discrimination, obtained through the scintillation light as well as through the study of the shape of the thermal signal alone. The discrimination capability obtained at the 2615 keV line of Tl-208 is 8 sigma, using the heat-light scatter plot, while it exceeds 20 sigma using the shape of the thermal pulse alone. The achieved FWHM energy resolution ranges from 2.4 keV (at 238 keV) to 5.7 keV (at 2615 keV). The internal radioactive contaminations of the ZnMoO4 crystals were evaluated through a 407 hours background measurement. The obtained limit is < 32 microBq/kg for Th-228 and Ra-226. These values were used for a Monte Carlo simulation aimed at evaluating the achievable background level of a possible, future array of enriched ZnMoO4 crystals., 9 pages, 8 figures
- Published
- 2012
244. Final results of the Aurora experiment to study 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators.
- Author
-
Barabash, A. S., Belli, P., Bernabei, R., Cappella, F., Caracciolo, V., Cerulli, R., Chernyak, D. M., Danevich, F. A., d'Angelo, S., Incicchitti, A., Kasperovych, D. V., Kobychev, V. V., Konovalov, S. I., Laubenstein, M., Poda, D. V., Polischuk, O. G., Shlegel, V. N., Tretyak, V. I., Umatov, V. I., and Vasiliev, Ya. V.
- Subjects
- *
DOUBLE beta decay , *NEUTRINO mass , *SCINTILLATORS - Abstract
The double-beta decay of 116Cd has been investigated with the help of radiopure enriched 116CdWO4 crystal scintillators (mass of 1.162 kg) at the Gran Sasso underground laboratory. The half-life of 116Cd relative to the 2ν2β decay to the ground state of 116Sn was measured with the highest up-to-date accuracy as T1/2=(2.63+0.11-0.12)×1019 yr. A new improved limit on the 0ν2β decay of 116Cd to the ground state of 116Sn was set as T1/2≥2.2×1023 yr at 90% C.L., which is the most stringent known restriction for this isotope. It corresponds to the effective Majorana neutrino mass limit in the range ⟨mν⟩≤(1.0-1.7) eV, depending on the nuclear matrix elements used in the estimations. New improved half-life limits for the 0ν2β decay with majoron(s) emission, Lorentz-violating 2ν2β decay, and 2β transitions to excited states of 116Sn were set at the level of T1/2≥1020-1022 yr. New limits for the hypothetical lepton-number violating parameters (right-handed currents admixtures in weak interaction, the effective majoron-neutrino coupling constants, R-parity violating parameter, Lorentz-violating parameter, heavy neutrino mass) were set. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
245. Measurement of the 2νββ Decay Rate and Spectral Shape of ^{100}Mo from the CUPID-Mo Experiment.
- Author
-
Augier C, Barabash AS, Bellini F, Benato G, Beretta M, Bergé L, Billard J, Borovlev YA, Cardani L, Casali N, Cazes A, Celi E, Chapellier M, Chiesa D, Dafinei I, Danevich FA, De Jesus M, Dixon T, Dumoulin L, Eitel K, Ferri F, Fujikawa BK, Gascon J, Gironi L, Giuliani A, Grigorieva VD, Gros M, Helis DL, Huang HZ, Huang R, Imbert L, Johnston J, Juillard A, Khalife H, Kleifges M, Kobychev VV, Kolomensky YG, Konovalov SI, Kotila J, Loaiza P, Ma L, Makarov EP, de Marcillac P, Mariam R, Marini L, Marnieros S, Navick XF, Nones C, Norman EB, Olivieri E, Ouellet JL, Pagnanini L, Pattavina L, Paul B, Pavan M, Peng H, Pessina G, Pirro S, Poda DV, Polischuk OG, Pozzi S, Previtali E, Redon T, Rojas A, Rozov S, Sanglard V, Scarpaci JA, Schmidt B, Shen Y, Shlegel VN, Šimkovic F, Singh V, Tomei C, Tretyak VI, Umatov VI, Vagneron L, Velázquez M, Ware B, Welliver B, Winslow L, Xue M, Yakushev E, Zarytskyy M, and Zolotarova AS
- Abstract
Neutrinoless double beta decay (0νββ) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νββ) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νββ decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.07±0.02(stat)±0.11(syst)]×10^{18} yr by the CUPID-Mo experiment. With a relative precision of ±1.6% this is the most precise measurement to date of a 2νββ decay rate in ^{100}Mo. In addition, we constrain higher-order corrections to the spectral shape, which provides complementary nuclear structure information. We report a novel measurement of the shape factor ξ_{3,1}=0.45±0.03(stat)±0.05(syst) based on a constraint on the ratio of higher-order terms from theory, which can be reliably calculated. This is compared to theoretical predictions for different nuclear models. We also extract the first value for the effective axial vector coupling constant obtained from a spectral shape study of 2νββ decay.
- Published
- 2023
- Full Text
- View/download PDF
246. New Limit for Neutrinoless Double-Beta Decay of ^{100}Mo from the CUPID-Mo Experiment.
- Author
-
Armengaud E, Augier C, Barabash AS, Bellini F, Benato G, Benoît A, Beretta M, Bergé L, Billard J, Borovlev YA, Bourgeois C, Brudanin VB, Camus P, Cardani L, Casali N, Cazes A, Chapellier M, Charlieux F, Chiesa D, de Combarieu M, Dafinei I, Danevich FA, De Jesus M, Dixon T, Dumoulin L, Eitel K, Ferri F, Fujikawa BK, Gascon J, Gironi L, Giuliani A, Grigorieva VD, Gros M, Guerard E, Helis DL, Huang HZ, Huang R, Johnston J, Juillard A, Khalife H, Kleifges M, Kobychev VV, Kolomensky YG, Konovalov SI, Leder A, Loaiza P, Ma L, Makarov EP, de Marcillac P, Mariam R, Marini L, Marnieros S, Misiak D, Navick XF, Nones C, Norman EB, Novati V, Olivieri E, Ouellet JL, Pagnanini L, Pari P, Pattavina L, Paul B, Pavan M, Peng H, Pessina G, Pirro S, Poda DV, Polischuk OG, Pozzi S, Previtali E, Redon T, Rojas A, Rozov S, Rusconi C, Sanglard V, Scarpaci JA, Schäffner K, Schmidt B, Shen Y, Shlegel VN, Siebenborn B, Singh V, Tomei C, Tretyak VI, Umatov VI, Vagneron L, Velázquez M, Welliver B, Winslow L, Xue M, Yakushev E, Zarytskyy M, and Zolotarova AS
- Abstract
The CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale bolometric 0νββ experiment. It consists of a 4.2 kg array of 20 enriched Li_{2}^{100}MoO_{4} scintillating bolometers to search for the lepton-number-violating process of 0νββ decay in ^{100}Mo. With more than one year of operation (^{100}Mo exposure of 1.17 kg×yr for physics data), no event in the region of interest and, hence, no evidence for 0νββ is observed. We report a new limit on the half-life of 0νββ decay in ^{100}Mo of T_{1/2}>1.5×10^{24} yr at 90% C.I. The limit corresponds to an effective Majorana neutrino mass ⟨m_{ββ}⟩<(0.31-0.54) eV, dependent on the nuclear matrix element in the light Majorana neutrino exchange interpretation.
- Published
- 2021
- Full Text
- View/download PDF
247. Development of 100 Mo -containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search.
- Author
-
Armengaud E, Augier C, Barabash AS, Beeman JW, Bekker TB, Bellini F, Benoît A, Bergé L, Bergmann T, Billard J, Boiko RS, Broniatowski A, Brudanin V, Camus P, Capelli S, Cardani L, Casali N, Cazes A, Chapellier M, Charlieux F, Chernyak DM, de Combarieu M, Coron N, Danevich FA, Dafinei I, Jesus M, Devoyon L, Domizio SD, Dumoulin L, Eitel K, Enss C, Ferroni F, Fleischmann A, Foerster N, Gascon J, Gastaldo L, Gironi L, Giuliani A, Grigorieva VD, Gros M, Hehn L, Hervé S, Humbert V, Ivannikova NV, Ivanov IM, Jin Y, Juillard A, Kleifges M, Kobychev VV, Konovalov SI, Koskas F, Kozlov V, Kraus H, Kudryavtsev VA, Laubenstein M, Sueur HL, Loidl M, Magnier P, Makarov EP, Mancuso M, de Marcillac P, Marnieros S, Marrache-Kikuchi C, Nagorny S, Navick XF, Nikolaichuk MO, Nones C, Novati V, Olivieri E, Pagnanini L, Pari P, Pattavina L, Pavan M, Paul B, Penichot Y, Pessina G, Piperno G, Pirro S, Plantevin O, Poda DV, Queguiner E, Redon T, Rodrigues M, Rozov S, Rusconi C, Sanglard V, Schäffner K, Scorza S, Shlegel VN, Siebenborn B, Strazzer O, Tcherniakhovski D, Tomei C, Tretyak VI, Umatov VI, Vagneron L, Vasiliev YV, Velázquez M, Vignati M, Weber M, Yakushev E, and Zolotarova AS
- Abstract
This paper reports on the development of a technology involving 100 Mo -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ( ∼ 1 kg ), high optical quality, radiopure 100 Mo -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q -value of the double-beta transition of 100 Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α -induced dominant background above 2.6 MeV is better than 8 σ . Less than 10 μ Bq/kg activity of 232 Th ( 228 Th ) and 226 Ra in the crystals is ensured by boule recrystallization. The potential of 100 Mo -enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg × d exposure: the two neutrino double-beta decay half-life of 100 Mo has been measured with the up-to-date highest accuracy as T 1 / 2 = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10 18 years . Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100 Mo ., (© The Author(s) 2017.)
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.