249 results on '"Omilian A"'
Search Results
202. Level of SSRP1 in Cancer as a Prognostic Marker of Aggressive Disease
- Author
-
Gurova, Katerina V., primary, Garcia, Henry, additional, Miecznikowski, Jeff, additional, Omilian, Angela R., additional, and Morrison, Carl, additional
- Published
- 2013
- Full Text
- View/download PDF
203. Facilitates Chromatin Transcription Complex Is an “Accelerator” of Tumor Transformation and Potential Marker and Target of Aggressive Cancers
- Author
-
Garcia, Henry, primary, Miecznikowski, Jeffrey C., additional, Safina, Alfiya, additional, Commane, Mairead, additional, Ruusulehto, Anja, additional, Kilpinen, Sami, additional, Leach, Robert W., additional, Attwood, Kristopher, additional, Li, Yan, additional, Degan, Seamus, additional, Omilian, Angela R., additional, Guryanova, Olga, additional, Papantonopoulou, Olympia, additional, Wang, Jianmin, additional, Buck, Michael, additional, Liu, Song, additional, Morrison, Carl, additional, and Gurova, Katerina V., additional
- Published
- 2013
- Full Text
- View/download PDF
204. Curaxin Cbl0137 Demonstrates Significant Antitumor Activity Against Fact-Positive Patient-Derived Pancreatic Ductal Adenocarcinoma
- Author
-
Burkhart, Catherine, primary, Paszkiewicz, Geraldine, additional, Gawron, Loretta, additional, Kohrn, Rachael, additional, Purmal, Andrei, additional, Repasky, Elizabeth, additional, Morrison, Carl, additional, Omilian, Angela, additional, Gudkov, Andrei, additional, and Gurova, Katerina, additional
- Published
- 2013
- Full Text
- View/download PDF
205. Pitfalls of improperly procured adjacent non-neoplastic tissue for somatic mutation analysis using next-generation sequencing.
- Author
-
Lei Wei, Papanicolau-Sengos, Antonios, Song Liu, Jianmin Wang, Conroy, Jeffrey M., Glenn, Sean T., Brese, Elizabeth, Qiang Hu, Miles, Kiersten Marie, Burgher, Blake, Qin, Maochun, Head, Karen, Omilian, Angela R., Bshara, Wiam, Krolewski, John, Trump, Donald L., Johnson, Candace S., and Morrison, Carl D.
- Subjects
SOMATIC mutation ,NUCLEOTIDE sequencing ,GENETIC polymorphisms ,GERM cells ,LUMPECTOMY - Abstract
Background: The rapid adoption of next-generation sequencing provides an efficient system for detecting somatic alterations in neoplasms. The detection of such alterations requires a matched non-neoplastic sample for adequate filtering of non-somatic events such as germline polymorphisms. Non-neoplastic tissue adjacent to the excised neoplasm is often used for this purpose as it is simultaneously collected and generally contains the same tissue type as the neoplasm. Following NGS analysis, we and others have frequently observed low-level somatic mutations in these non-neoplastic tissues, which may impose additional challenges to somatic mutation detection as it complicates germline variant filtering. Methods: We hypothesized that the low-level somatic mutation observed in non-neoplastic tissues may be entirely or partially caused by inadvertent contamination by neoplastic cells during the surgical pathology gross assessment or tissue procurement process. To test this hypothesis, we applied a systematic protocol designed to collect multiple grossly non-neoplastic tissues using different methods surrounding each single neoplasm. The procedure was applied in two breast cancer lumpectomy specimens. In each case, all samples were first sequenced by whole-exome sequencing to identify somatic mutations in the neoplasm and determine their presence in the adjacent non-neoplastic tissues. We then generated ultra-deep coverage using targeted sequencing to assess the levels of contamination in non-neoplastic tissue samples collected under different conditions. Results: Contamination levels in non-neoplastic tissues ranged up to 3.5 and 20.9% respectively in the two cases tested, with consistent pattern correlated with the manner of grossing and procurement. By carefully controlling the conditions of various steps during this process, we were able to eliminate any detectable contamination in both patients. Conclusion: The results demonstrated that the process of tissue procurement contributes to the level of contamination in non-neoplastic tissue, and contamination can be reduced to below detectable levels by using a carefully designed collection method. A standard protocol dedicated for acquiring adjacent non-neoplastic tissue that minimizes neoplasm contamination should be implemented for all somatic mutation detection studies. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
206. Level of SSRP1 in Cancer as a Prognostic Marker of Aggressive Disease
- Author
-
Jeff Miecznikowski, Carl Morrison, Katerina Gurova, Henry Garcia, and Angela Omilian
- Subjects
Oncology ,medicine.medical_specialty ,business.industry ,Internal medicine ,medicine ,Cancer ,General Medicine ,Aggressive disease ,business ,medicine.disease - Published
- 2013
207. Curaxin Cbl0137 Demonstrates Significant Antitumor Activity Against Fact-Positive Patient-Derived Pancreatic Ductal Adenocarcinoma
- Author
-
Andrei Purmal, Angela Omilian, Carl Morrison, Loretta Gawron, Elizabeth A. Repasky, Rachael Kohrn, Andrei V. Gudkov, Catherine Burkhart, Geraldine M. Paszkiewicz, and Katerina Gurova
- Subjects
Antitumor activity ,Pancreatic ductal adenocarcinoma ,Oncology ,business.industry ,Cancer research ,Medicine ,Hematology ,business ,Positive patient - Published
- 2013
208. Transcontinental Phylogeography of the Daphnia pulex Species Complex
- Author
-
Crease, Teresa J., primary, Omilian, Angela R., additional, Costanzo, Katie S., additional, and Taylor, Derek J., additional
- Published
- 2012
- Full Text
- View/download PDF
209. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin
- Author
-
Yang, Nuo, primary, Morrison, Carl D., additional, Liu, Peijun, additional, Miecznikowski, Jeff, additional, Bshara, Wiam, additional, Han, Suxia, additional, Zhu, Qing, additional, Omilian, Angela R., additional, Li, Xu, additional, and Zhang, Jianmin, additional
- Published
- 2012
- Full Text
- View/download PDF
210. Effect of long-term differentiated fertilization with farmyard manure and mineral fertilizers on the content of available forms of P, K and Mg in soil
- Author
-
Sienkiewicz, Stanisław, primary, Żarczyński, Piotr, additional, Krzebietke, Sławomir, additional, Wojnowska, Teresa, additional, and Omilian, Małgorzata, additional
- Published
- 2012
- Full Text
- View/download PDF
211. PP2A-B56α controls oncogene-induced senescence in normal and tumor human melanocytic cells
- Author
-
Mannava, S, primary, Omilian, A R, additional, Wawrzyniak, J A, additional, Fink, E E, additional, Zhuang, D, additional, Miecznikowski, J C, additional, Marshall, J R, additional, Soengas, M S, additional, Sears, R C, additional, Morrison, C D, additional, and Nikiforov, M A, additional
- Published
- 2011
- Full Text
- View/download PDF
212. Differential vitamin D 24-hydroxylase/CYP24A1gene promoter methylation in endothelium from benign and malignant human prostate
- Author
-
Deeb, Kristin K., primary, Luo, Wei, additional, Karpf, Adam R., additional, Omilian, Angela R., additional, Bshara, Wiam, additional, Tian, Lili, additional, Tangrea, Michael A., additional, Morrison, Carl D., additional, Johnson, Candace S., additional, and Trump, Donald L., additional
- Published
- 2011
- Full Text
- View/download PDF
213. Expression of PAX2 and Renal Cell Carcinoma Antigen in Mucoepidermoid Carcinoma
- Author
-
Yunguang Liu, Bo Xu, Angela Omilian, Carl Morrison, and Richard T. Cheney
- Subjects
Pathology ,medicine.medical_specialty ,Tissue microarray ,medicine.diagnostic_test ,Biology ,urologic and male genital diseases ,medicine.disease ,Primary tumor ,body regions ,Clear cell renal cell carcinoma ,Mucoepidermoid carcinoma ,Renal cell carcinoma ,Biopsy ,medicine ,Immunohistochemistry ,Clear cell - Abstract
Clear cell renal cell carcinoma (CCRCC) is the most common metastatic clear cell tumor in the head and neck. The most common primary tumor of the head and neck with clear cell morphology is mucoepidermoid carcinoma (MEC). The distinction between MEC with clear cells (CMEC) and metastatic CCRCC can be challenging in a small biopsy specimen. Expression of PAX2 and renal cell carcinoma antigen (RCCma) has been widely used to aid of diagnosis for both primary and metastatic RCC. The aim of this study is to evaluate the utility of expression of PAX2 and RCCma between CMEC and metastatic CCRCC in a clinical setting using tissue microarrays (TMAs). In primary CCRCC, the nuclear immunoreactivity for PAX2 was found in 47 of 120 cases (39%), and the membranous staining pattern for RCCma was revealed in 69 of 120 cases (58%). The immunostain profiles of metastatic RCC showed positive staining for PAX2 in 21 of 94 cases (22%) and RCCma in 19 cases (20%), respectively. Two of six cases (33%) of metastatic RCC to the head and neck region display immunoreactivity for either PAX2 or RCCma. For MEC, positive membranous and cytoplasmic staining of RCCma was found in 3 of 23 cases (13%), and diffuse cytoplasmic reactivity for PAX2 was noted in 19 cases (83%). However, none of MEC showed nuclear reactivity that is specific for PAX2. Results of our study suggest that although PAX2 and RCCma are relatively specific for CCRCC, one should be cautious when interpreting the results of RCCma and PAX2 expression in the setting of CMEC versus metastatic CCRCC, particularly in a biopsy specimen. Clinicopathologic correlation combined with histomorphology and a panel of immunohistochemical markers is essential to render correct diagnosis. [N A J Med Sci. 2012;5(4):203-207.]
- Published
- 2012
214. High Rate of Large-Scale Hemizygous Deletions in Asexually Propagating Daphnia: Implications for the Evolution of Sex
- Author
-
Xu, S., primary, Omilian, A. R., additional, and Cristescu, M. E., additional
- Published
- 2010
- Full Text
- View/download PDF
215. 31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one: National Harbor, MD, USA. 9-13 November 2016
- Author
-
Lundqvist, Andreas, van Hoef, Vincent, Zhang, Xiaonan, Wennerberg, Erik, Lorent, Julie, Witt, Kristina, Sanz, Laia Masvidal, Liang, Shuo, Murray, Shannon, Larsson, Ola, Kiessling, Rolf, Mao, Yumeng, Sidhom, John-William, Bessell, Catherine A., Havel, Jonathan, Schneck, Jonathan, Chan, Timothy A., Sachsenmeier, Eliot, Woods, David, Berglund, Anders, Ramakrishnan, Rupal, Sodre, Andressa, Weber, Jeffrey, Zappasodi, Roberta, Li, Yanyun, Qi, Jingjing, Wong, Philip, Sirard, Cynthia, Postow, Michael, Newman, Walter, Koon, Henry, Velcheti, Vamsidhar, Callahan, Margaret K., Wolchok, Jedd D., Merghoub, Taha, Lum, Lawrence G., Choi, Minsig, Thakur, Archana, Deol, Abhinav, Dyson, Gregory, Shields, Anthony, Haymaker, Cara, Uemura, Marc, Murthy, Ravi, James, Marihella, Wang, Daqing, Brevard, Julie, Monaghan, Catherine, Swann, Suzanne, Geib, James, Cornfeld, Mark, Chunduru, Srinivas, Agrawal, Sudhir, Yee, Cassian, Wargo, Jennifer, Patel, Sapna P., Amaria, Rodabe, Tawbi, Hussein, Glitza, Isabella, Woodman, Scott, Hwu, Wen-Jen, Davies, Michael A., Hwu, Patrick, Overwijk, Willem W., Bernatchez, Chantale, Diab, Adi, Massarelli, Erminia, Segal, Neil H., Ribrag, Vincent, Melero, Ignacio, Gangadhar, Tara C., Urba, Walter, Schadendorf, Dirk, Ferris, Robert L., Houot, Roch, Morschhauser, Franck, Logan, Theodore, Luke, Jason J., Sharfman, William, Barlesi, Fabrice, Ott, Patrick A., Mansi, Laura, Kummar, Shivaani, Salles, Gilles, Carpio, Cecilia, Meier, Roland, Krishnan, Suba, McDonald, Dan, Maurer, Matthew, Gu, Xuemin, Neely, Jaclyn, Suryawanshi, Satyendra, Levy, Ronald, Khushalani, Nikhil, Wu, Jennifer, Zhang, Jinyu, Basher, Fahmin, Rubinstein, Mark, Bucsek, Mark, Qiao, Guanxi, MacDonald, Cameron, Hylander, Bonnie, Repasky, Elizabeth, Chatterjee, Shilpak, Daenthanasanmak, Anusara, Chakraborty, Paramita, Toth, Kyle, Meek, Megan, Garrett-Mayer, Elizabeth, Nishimura, Michael, Paulos, Chrystal, Beeson, Craig, Yu, Xuezhong, Mehrotra, Shikhar, Zhao, Fei, Evans, Kathy, Xiao, Christine, Holtzhausen, Alisha, Hanks, Brent A., Scharping, Nicole, Menk, Ashley V., Moreci, Rebecca, Whetstone, Ryan, Dadey, Rebekah, Watkins, Simon, Ferris, Robert, Delgoffe, Greg M., Peled, Jonathan, Devlin, Sean, Staffas, Anna, Lumish, Melissa, Rodriguez, Kori Porosnicu, Ahr, Katya, Perales, Miguel, Giralt, Sergio, Taur, Ying, Pamer, Eric, van den Brink, Marcel R. M., Jenq, Robert, Annels, Nicola, Pandha, Hardev, Simpson, Guy, Mostafid, Hugh, Harrington, Kevin, Melcher, Alan, Grose, Mark, Davies, Bronwyn, Au, Gough, Karpathy, Roberta, Shafren, Darren, Ricca, Jacob, Zamarin, Dmitriy, Batista, Luciana, Marliot, Florence, Vasaturo, Angela, Carpentier, Sabrina, Poggionovo, Cécile, Frayssinet, Véronique, Fieschi, Jacques, Van den Eynde, Marc, Pagès, Franck, Galon, Jérôme, Hermitte, Fabienne, Smith, Sean G., Nguyen, Khue, Ravindranathan, Sruthi, Koppolu, Bhanu, Zaharoff, David, Schvartsman, Gustavo, Bassett, Roland, McQuade, Jennifer L., Haydu, Lauren E., Kline, Douglas, Chen, Xiufen, Fosco, Dominick, Kline, Justin, Overacre, Abigail, Chikina, Maria, Brunazzi, Erin, Shayan, Gulidanna, Horne, William, Kolls, Jay, Bruno, Tullia C., Workman, Creg, Vignali, Dario, Adusumilli, Prasad S., Ansa-Addo, Ephraim A, Li, Zihai, Gerry, Andrew, Sanderson, Joseph P., Howe, Karen, Docta, Roslin, Gao, Qian, Bagg, Eleanor A. L., Tribble, Nicholas, Maroto, Miguel, Betts, Gareth, Bath, Natalie, Melchiori, Luca, Lowther, Daniel E., Ramachandran, Indu, Kari, Gabor, Basu, Samik, Binder-Scholl, Gwendolyn, Chagin, Karen, Pandite, Lini, Holdich, Tom, Amado, Rafael, Zhang, Hua, Glod, John, Bernstein, Donna, Jakobsen, Bent, Mackall, Crystal, Wong, Ryan, Silk, Jonathan D., Adams, Katherine, Hamilton, Garth, Bennett, Alan D., Brett, Sara, Jing, Junping, Quattrini, Adriano, Saini, Manoj, Wiedermann, Guy, Brewer, Joanna, Duong, MyLinh, Lu, An, Chang, Peter, Mahendravada, Aruna, Shinners, Nicholas, Slawin, Kevin, Spencer, David M., Foster, Aaron E., Bayle, J. Henri, Bergamaschi, Cristina, Ng, Sinnie Sin Man, Nagy, Bethany, Jensen, Shawn, Hu, Xintao, Alicea, Candido, Fox, Bernard, Felber, Barbara, Pavlakis, George, Chacon, Jessica, Yamamoto, Tori, Garrabrant, Thomas, Cortina, Luis, Powell, Daniel J., Donia, Marco, Kjeldsen, Julie Westerlin, Andersen, Rikke, Westergaard, Marie Christine Wulff, Bianchi, Valentina, Legut, Mateusz, Attaf, Meriem, Dolton, Garry, Szomolay, Barbara, Ott, Sascha, Lyngaa, Rikke, Hadrup, Sine Reker, Sewell, Andrew Kelvin, Svane, Inge Marie, Fan, Aaron, Kumai, Takumi, Celis, Esteban, Frank, Ian, Stramer, Amanda, Blaskovich, Michelle A., Wardell, Seth, Fardis, Maria, Bender, James, Lotze, Michael T., Goff, Stephanie L., Zacharakis, Nikolaos, Assadipour, Yasmine, Prickett, Todd D., Gartner, Jared J., Somerville, Robert, Black, Mary, Xu, Hui, Chinnasamy, Harshini, Kriley, Isaac, Lu, Lily, Wunderlich, John, Robbins, Paul F., Rosenberg, Steven, Feldman, Steven A., Trebska-McGowan, Kasia, Malekzadeh, Parisa, Payabyab, Eden, Sherry, Richard, Gokuldass, Aishwarya, Kopits, Charlene, Rabinovich, Brian, Green, Daniel S., Kamenyeva, Olena, Zoon, Kathryn C., Annunziata, Christina M., Hammill, Joanne, Helsen, Christopher, Aarts, Craig, Bramson, Jonathan, Harada, Yui, Yonemitsu, Yoshikazu, Mwawasi, Kenneth, Denisova, Galina, Giri, Rajanish, Jin, Benjamin, Campbell, Tracy, Draper, Lindsey M., Stevanovic, Sanja, Yu, Zhiya, Weissbrich, Bianca, Restifo, Nicholas P., Trimble, Cornelia L., Hinrichs, Christian S., Tsang, Kwong, Fantini, Massimo, Hodge, James W., Fujii, Rika, Fernando, Ingrid, Jochems, Caroline, Heery, Christopher, Gulley, James, Soon-Shiong, Patrick, Schlom, Jeffrey, Jing, Weiqing, Gershan, Jill, Blitzer, Grace, Weber, James, McOlash, Laura, Johnson, Bryon D., Kiany, Simin, Gangxiong, Huang, Kleinerman, Eugenie S., Klichinsky, Michael, Ruella, Marco, Shestova, Olga, Kenderian, Saad, Kim, Miriam, Scholler, John, June, Carl H., Gill, Saar, Moogk, Duane, Zhong, Shi, Liadi, Ivan, Rittase, William, Fang, Victoria, Dougherty, Janna, Perez-Garcia, Arianne, Osman, Iman, Zhu, Cheng, Varadarajan, Navin, Frey, Alan, Krogsgaard, Michelle, Landi, Daniel, Fousek, Kristen, Mukherjee, Malini, Shree, Ankita, Joseph, Sujith, Bielamowicz, Kevin, Byrd, Tiara, Ahmed, Nabil, Hegde, Meenakshi, Lee, Sylvia, Byrd, David, Thompson, John, Bhatia, Shailender, Tykodi, Scott, Delismon, Judy, Chu, Liz, Abdul-Alim, Siddiq, Ohanian, Arpy, DeVito, Anna Marie, Riddell, Stanley, Margolin, Kim, Magalhaes, Isabelle, Mattsson, Jonas, Uhlin, Michael, Nemoto, Satoshi, Villarroel, Patricio Pérez, Nakagawa, Ryosuke, Mule, James J., Mailloux, Adam W., Mata, Melinda, Nguyen, Phuong, Gerken, Claudia, DeRenzo, Christopher, Gottschalk, Stephen, Mathieu, Mélissa, Pelletier, Sandy, Stagg, John, Turcotte, Simon, Minutolo, Nicholas, Sharma, Prannda, Tsourkas, Andrew, Mockel-Tenbrinck, Nadine, Mauer, Daniela, Drechsel, Katharina, Barth, Carola, Freese, Katharina, Kolrep, Ulrike, Schult, Silke, Assenmacher, Mario, Kaiser, Andrew, Mullinax, John, Hall, MacLean, Le, Julie, Kodumudi, Krithika, Royster, Erica, Richards, Allison, Gonzalez, Ricardo, Sarnaik, Amod, Pilon-Thomas, Shari, Nielsen, Morten, Krarup-Hansen, Anders, Hovgaard, Dorrit, Petersen, Michael Mørk, Loya, Anand Chainsukh, Junker, Niels, Rivas, Charlotte, Parihar, Robin, Rooney, Cliona M., Qin, Haiying, Nguyen, Sang, Su, Paul, Burk, Chad, Duncan, Brynn, Kim, Bong-Hyun, Kohler, M. Eric, Fry, Terry, Rao, Arjun A., Teyssier, Noam, Pfeil, Jacob, Sgourakis, Nikolaos, Salama, Sofie, Haussler, David, Richman, Sarah A., Nunez-Cruz, Selene, Gershenson, Zack, Mourelatos, Zissimos, Barrett, David, Grupp, Stephan, Milone, Michael, Rodriguez-Garcia, Alba, Robinson, Matthew K., Adams, Gregory P., Santos, João, Havunen, Riikka, Siurala, Mikko, Cervera-Carrascón, Víctor, Parviainen, Suvi, Antilla, Marjukka, Hemminki, Akseli, Sethuraman, Jyothi, Santiago, Laurelis, Chen, Jie Qing, Dai, Zhimin, Sha, Huizi, Su, Shu, Ding, Naiqing, Liu, Baorui, Pasetto, Anna, Helman, Sarah R., Rosenberg, Steven A., Burgess, Melissa, Zhang, Hui, Lee, Tien, Klingemann, Hans, Nghiem, Paul, Kirkwood, John M., Rossi, John M., Sherman, Marika, Xue, Allen, Shen, Yueh-wei, Navale, Lynn, Kochenderfer, James N., Bot, Adrian, Veerapathran, Anandaraman, Wiener, Doris, Waller, Edmund K., Li, Jian-Ming, Petersen, Christopher, Blazar, Bruce R., Li, Jingxia, Giver, Cynthia R., Wang, Ziming, Grossenbacher, Steven K., Sturgill, Ian, Canter, Robert J., Murphy, William J., Zhang, Congcong, Burger, Michael C., Jennewein, Lukas, Waldmann, Anja, Mittelbronn, Michel, Tonn, Torsten, Steinbach, Joachim P., Wels, Winfried S., Williams, Jason B., Zha, Yuanyuan, Gajewski, Thomas F., Williams, LaTerrica C., Krenciute, Giedre, Kalra, Mamta, Louis, Chrystal, Xin, Gang, Schauder, David, Jiang, Aimin, Joshi, Nikhil, Cui, Weiguo, Zeng, Xue, Zhao, Zeguo, Hamieh, Mohamad, Eyquem, Justin, Gunset, Gertrude, Bander, Neil, Sadelain, Michel, Askmyr, David, Abolhalaj, Milad, Lundberg, Kristina, Greiff, Lennart, Lindstedt, Malin, Angell, Helen K., Kim, Kyoung-Mee, Kim, Seung-Tae, Kim, Sung, Sharpe, Alan D., Ogden, Julia, Davenport, Anna, Hodgson, Darren R., Barrett, Carl, Lee, Jeeyun, Kilgour, Elaine, Hanson, Jodi, Caspell, Richard, Karulin, Alexey, Lehmann, Paul, Ansari, Tameem, Schiller, Annemarie, Sundararaman, Srividya, Roen, Diana, Ayers, Mark, Levitan, Diane, Arreaza, Gladys, Liu, Fang, Mogg, Robin, Bang, Yung-Jue, O’Neil, Bert, Cristescu, Razvan, Friedlander, Philip, Wassman, Karl, Kyi, Chrisann, Oh, William, Bhardwaj, Nina, Bornschlegl, Svetlana, Gustafson, Michael P., Gastineau, Dennis A., Parney, Ian F., Dietz, Allan B., Carvajal-Hausdorf, Daniel, Mani, Nikita, Schalper, Kurt, Rimm, David, Chang, Serena, Kurland, John, Ahlers, Christoph Matthias, Jure-Kunkel, Maria, Cohen, Lewis, Maecker, Holden, Kohrt, Holbrook, Chen, Shuming, Crabill, George, Pritchard, Theresa, McMiller, Tracee, Pardoll, Drew, Pan, Fan, Topalian, Suzanne, Danaher, Patrick, Warren, Sarah, Dennis, Lucas, White, Andrew M., D’Amico, Leonard, Geller, Melissa, Disis, Mary L., Beechem, Joseph, Odunsi, Kunle, Fling, Steven, Derakhshandeh, Roshanak, Webb, Tonya J., Dubois, Sigrid, Conlon, Kevin, Bryant, Bonita, Hsu, Jennifer, Beltran, Nancy, Müller, Jürgen, Waldmann, Thomas, Duhen, Rebekka, Duhen, Thomas, Thompson, Lucas, Montler, Ryan, Weinberg, Andrew, Kates, Max, Early, Brandon, Yusko, Erik, Schreiber, Taylor H., Bivalacqua, Trinity J., Lunceford, Jared, Nebozhyn, Michael, Murphy, Erin, Loboda, Andrey, Kaufman, David R., Albright, Andrew, Cheng, Jonathan, Kang, S. Peter, Shankaran, Veena, Piha-Paul, Sarina A., Yearley, Jennifer, Seiwert, Tanguy, Ribas, Antoni, McClanahan, Terrill K., Sher, Xinwei, Liu, Xiao Qiao, Joe, Andrew, Plimack, Elizabeth, Forrest-Hay, Alex, Guyre, Cheryl A., Narumiya, Kohei, Delcommenne, Marc, Hirsch, Heather A., Deshpande, Amit, Reeves, Jason, Shu, Jenny, Zi, Tong, Michaelson, Jennifer, Law, Debbie, Trehu, Elizabeth, Sathyanaryanan, Sriram, Hodkinson, Brendan P., Hutnick, Natalie A., Schaffer, Michael E., Gormley, Michael, Hulett, Tyler, Ballesteros-Merino, Carmen, Dubay, Christopher, Afentoulis, Michael, Reddy, Ashok, David, Larry, Jayant, Kumar, Agrawal, Swati, Agrawal, Rajendra, Jeyakumar, Ghayathri, Kim, Seongho, Kim, Heejin, Silski, Cynthia, Suisham, Stacey, Heath, Elisabeth, Vaishampayan, Ulka, Vandeven, Natalie, Viller, Natasja Nielsen, O’Connor, Alison, Chen, Hui, Bossen, Bolette, Sievers, Eric, Uger, Robert, Johnson, Lisa, Kao, Hsiang-Fong, Hsiao, Chin-Fu, Lai, Shu-Chuan, Wang, Chun-Wei, Ko, Jenq-Yuh, Lou, Pei-Jen, Lee, Tsai-Jan, Liu, Tsang-Wu, Hong, Ruey-Long, Kearney, Staci J., Black, Joshua C., Landis, Benjamin J., Koegler, Sally, Hirsch, Brooke, Gianani, Roberto, Kim, Jeffrey, He, Ming-Xiao, Zhang, Bingqing, Su, Nan, Luo, Yuling, Ma, Xiao-Jun, Park, Emily, Kim, Dae Won, Copploa, Domenico, Kothari, Nishi, doo Chang, Young, Kim, Richard, Kim, Namyong, Lye, Melvin, Wan, Ee, Knaus, Hanna A., Berglund, Sofia, Hackl, Hubert, Karp, Judith E., Gojo, Ivana, Luznik, Leo, Hong, Henoch S., Koch, Sven D., Scheel, Birgit, Gnad-Vogt, Ulrike, Kallen, Karl-Josef, Wiegand, Volker, Backert, Linus, Kohlbacher, Oliver, Hoerr, Ingmar, Fotin-Mleczek, Mariola, Billingsley, James M., Koguchi, Yoshinobu, Conrad, Valerie, Miller, William, Gonzalez, Iliana, Poplonski, Tomasz, Meeuwsen, Tanisha, Howells-Ferreira, Ana, Rattray, Rogan, Campbell, Mary, Bifulco, Carlo, Bahjat, Keith, Curti, Brendan, Vetsika, E-K, Kallergi, G., Aggouraki, Despoina, Lyristi, Z., Katsarlinos, P., Koinis, Filippos, Georgoulias, V., Kotsakis, Athanasios, Martin, Nathan T., Aeffner, Famke, Cerkovnik, Logan, Pratte, Luke, Kim, Rebecca, Krueger, Joseph, Martínez-Usatorre, Amaia, Jandus, Camilla, Donda, Alena, Carretero-Iglesia, Laura, Speiser, Daniel E., Zehn, Dietmar, Rufer, Nathalie, Romero, Pedro, Panda, Anshuman, Mehnert, Janice, Hirshfield, Kim M., Riedlinger, Greg, Damare, Sherri, Saunders, Tracie, Sokol, Levi, Stein, Mark, Poplin, Elizabeth, Rodriguez-Rodriguez, Lorna, Silk, Ann, Chan, Nancy, Frankel, Melissa, Kane, Michael, Malhotra, Jyoti, Aisner, Joseph, Kaufman, Howard L., Ali, Siraj, Ross, Jeffrey, White, Eileen, Bhanot, Gyan, Ganesan, Shridar, Monette, Anne, Bergeron, Derek, Amor, Amira Ben, Meunier, Liliane, Caron, Christine, Morou, Antigoni, Kaufmann, Daniel, Liberman, Moishe, Jurisica, Igor, Mes-Masson, Anne-Marie, Hamzaoui, Kamel, Lapointe, Rejean, Mongan, Ann, Ku, Yuan-Chieh, Tom, Warren, Sun, Yongming, Pankov, Alex, Looney, Tim, Au-Young, Janice, Hyland, Fiona, Conroy, Jeff, Morrison, Carl, Glenn, Sean, Burgher, Blake, Ji, He, Gardner, Mark, Omilian, Angela R., Bshara, Wiam, Angela, Omilian, Obeid, Joseph M., Erdag, Gulsun, Smolkin, Mark E., Deacon, Donna H., Patterson, James W., Chen, Lieping, Bullock, Timothy N., Slingluff, Craig L., Loffredo, John T., Vuyyuru, Raja, Beyer, Sophie, Spires, Vanessa M., Fox, Maxine, Ehrmann, Jon M., Taylor, Katrina A., Korman, Alan J., Graziano, Robert F., Page, David, Sanchez, Katherine, Martel, Maritza, De Macedo, Mariana Petaccia, Qin, Yong, Reuben, Alex, Spencer, Christine, Guindani, Michele, Racolta, Adriana, Kelly, Brian, Jones, Tobin, Polaske, Nathan, Theiss, Noah, Robida, Mark, Meridew, Jeffrey, Habensus, Iva, Zhang, Liping, Pestic-Dragovich, Lidija, Tang, Lei, Sullivan, Ryan J., Olencki, Thomas, Hutson, Thomas, Roder, Joanna, Blackmon, Shauna, Roder, Heinrich, Stewart, John, Amin, Asim, Ernstoff, Marc S., Clark, Joseph I., Atkins, Michael B., Sosman, Jeffrey, McDermott, David F., Kluger, Harriet, Halaban, Ruth, Snzol, Mario, Asmellash, Senait, Steingrimsson, Arni, Wang, Chichung, Roman, Kristin, Clement, Amanda, Downing, Sean, Hoyt, Clifford, Harder, Nathalie, Schmidt, Guenter, Schoenmeyer, Ralf, Brieu, Nicolas, Yigitsoy, Mehmet, Madonna, Gabriele, Botti, Gerardo, Grimaldi, Antonio, Ascierto, Paolo A., Huss, Ralf, Athelogou, Maria, Hessel, Harald, Buchner, Alexander, Stief, Christian, Binnig, Gerd, Kirchner, Thomas, Sellappan, Shankar, Thyparambil, Sheeno, Schwartz, Sarit, Cecchi, Fabiola, Nguyen, Andrew, Vaske, Charles, Hembrough, Todd, Spacek, Jan, Vocka, Michal, Zavadova, Eva, Skalova, Helena, Dundr, Pavel, Petruzelka, Lubos, Francis, Nicole, Tilman, Rau T., Hartmann, Arndt, Netikova, Irena, Stump, Julia, Tufman, Amanda, Berger, Frank, Neuberger, Michael, Hatz, Rudolf, Lindner, Michael, Sanborn, Rachel E., Handy, John, Huber, Rudolf M., Winter, Hauke, Reu, Simone, Sun, Cheng, Xiao, Weihua, Tian, Zhigang, Arora, Kshitij, Desai, Niyati, Kulkarni, Anupriya, Rajurkar, Mihir, Rivera, Miguel, Deshpande, Vikram, Ting, David, Tsai, Katy, Nosrati, Adi, Goldinger, Simone, Hamid, Omid, Algazi, Alain, Tumeh, Paul, Hwang, Jimmy, Liu, Jacqueline, Chen, Lawrence, Dummer, Reinhard, Rosenblum, Michael, Daud, Adil, Tsao, Tsu-Shuen, Ashworth-Sharpe, Julia, Johnson, Donald, Bhaumik, Srabani, Bieniarz, Christopher, Couto, Joseph, Farrell, Michael, Ghaffari, Mahsa, Hubbard, Antony, Kosmeder, Jerome, Lee, Cleo, Marner, Erin, Uribe, Diana, Zhang, Hongjun, Zhang, Jian, Zhang, Wenjun, Zhu, Yifei, Morrison, Larry, Tsujikawa, Takahiro, Borkar, Rohan N., Azimi, Vahid, Kumar, Sushil, Thibault, Guillaume, Mori, Motomi, El Rassi, Edward, Clayburgh, Daniel R., Kulesz-Martin, Molly F., Flint, Paul W., Coussens, Lisa M., Villabona, Lisa, Masucci, Giuseppe V., Geiss, Gary, Birditt, Brian, Mei, Qian, Huang, Alan, Eagan, Maribeth A., Ignacio, Eduardo, Elliott, Nathan, Dunaway, Dwayne, Jung, Jaemyeong, Merritt, Chris, Sprague, Isaac, Webster, Philippa, Liang, Yan, Wenthe, Jessica, Enblad, Gunilla, Karlsson, Hannah, Essand, Magnus, Savoldo, Barbara, Dotti, Gianpietro, Höglund, Martin, Brenner, Malcolm K., Hagberg, Hans, Loskog, Angelica, Bernett, Matthew J., Moore, Gregory L., Hedvat, Michael, Bonzon, Christine, Chu, Seung, Rashid, Rumana, Avery, Kendra N., Muchhal, Umesh, Desjarlais, John, Kraman, Matthew, Kmiecik, Katarzyna, Allen, Natalie, Faroudi, Mustapha, Zimarino, Carlo, Wydro, Mateusz, Doody, Jacqueline, Srinivasa, Sreesha P., Govindappa, Nagaraja, Reddy, Praveen, Dubey, Aparajita, Periyasamy, Sankar, Adekandi, Madhukara, Dey, Chaitali, Joy, Mary, van Loo, Pieter Fokko, Veninga, Henrike, Shamsili, Setareh, Throsby, Mark, Dolstra, Harry, Bakker, Lex, Alva, Ajjai, Gschwendt, Juergen, Loriot, Yohann, Bellmunt, Joaquim, Feng, Dai, Poehlein, Christian, Powles, Thomas, Antonarakis, Emmanuel S., Drake, Charles G., Wu, Haiyan, De Bono, Johann, Bannerji, Rajat, Byrd, John, Gregory, Gareth, Opat, Stephen, Shortt, Jake, Yee, Andrew J., Raje, Noopur, Thompson, Seth, Balakumaran, Arun, Kumar, Shaji, Rini, Brian I., Choueiri, Toni K., Mariani, Mariangela, Albiges, Laurence, Haanen, John B., Larkin, James, Schmidinger, Manuela, Magazzù, Domenico, di Pietro, Alessandra, Motzer, Robert J., Borch, Troels Holz, Kongsted, Per, Pedersen, Magnus, Met, Özcan, Boudadi, Karim, Wang, Hao, Vasselli, James, Baughman, Jan E., Wigginton, Jon, Abdallah, Rehab, Ross, Ashley, Park, Jiwon, Grossenbacher, Steven, Luna, Jesus I., Withers, Sita, Culp, William, Chen, Mingyi, Monjazeb, Arta, Kent, Michael S., Chandran, Smita, Danforth, David, Yang, James, Klebanoff, Christopher, Goff, Stephanie, Paria, Biman, Sabesan, Arvind, Srivastava, Abhishek, Kammula, Udai, Richards, Jon, Faries, Mark, Andtbacka, Robert H. I., Diaz, Luis A., Le, Dung T., Yoshino, Takayuki, André, Thierry, Bendell, Johanna, Koshiji, Minori, Zhang, Yayan, Kang, S Peter, Lam, Bao, Jäger, Dirk, Bauer, Todd M., Wang, Judy S., Lee, Jean K., Manji, Gulam A., Kudchadkar, Ragini, Kauh, John S., Tang, Shande, Laing, Naomi, Falchook, Gerald, Garon, Edward B., Halmos, Balazs, Rina, Hui, Leighl, Natasha, Lee, Sung Sook, Walsh, William, Dragnev, Konstanin, Piperdi, Bilal, Rodriguez, Luis Paz-Ares, Shinwari, Nabeegha, Wei, Ziewn, Maas, Mary L, Deeds, Michael, Armstrong, Adam, Peterson, Tim, Steinmetz, Sue, Herzog, Thomas, Backes, Floor J., Copeland, Larry, Del Pilar Estevez Diz, Maria, Hare, Thomas W., Huh, Warner, Kim, Byoung-Gie, Moore, Kathleen M., Oaknin, Ana, Small, William, Tewari, Krishnansu S., Monk, Bradley J., Kamat, Ashish M., Nam, Kijoeng, De Santis, Maria, Dreicer, Robert, Hahn, Noah M., Perini, Rodolfo, Siefker-Radtke, Arlene, Sonpavde, Guru, de Wit, Ronald, Witjes, J. Alfred, Keefe, Stephen, Bajorin, Dean, Armand, Philippe, Kuruvilla, John, Moskowitz, Craig, Hamadani, Mehdi, Zinzani, Pier Luigi, Chlosta, Sabine, Bartlett, Nancy, Sabado, Rachel, Saenger, Yvonne, William, Loging, Donovan, Michael Joseph, Sacris, Erlinda, Mandeli, John, Salazar, Andres M., Powderly, John, Brody, Joshua, Nemunaitis, John, Emens, Leisha, Patnaik, Amita, McCaffery, Ian, Miller, Richard, Laport, Ginna, Coveler, Andrew L., Smith, David C., Grilley-Olson, Juneko E., Goel, Sanjay, Gardai, Shyra J., Law, Che-Leung, Means, Gary, Manley, Thomas, Marrone, Kristen A., Rosner, Gary, Anagnostou, Valsamo, Riemer, Joanne, Wakefield, Jessica, Zanhow, Cynthia, Baylin, Stephen, Gitlitz, Barbara, Brahmer, Julie, Signoretti, Sabina, Li, Wenting, Schloss, Charles, Michot, Jean-Marie, Ding, Wei, Christian, Beth, Marinello, Patricia, Shipp, Margaret, Najjar, Yana G., Lin, Butterfield, Lisa H., Tarhini, Ahmad A., Davar, Diwakar, Zarour, Hassane, Rush, Elizabeth, Sander, Cindy, Fu, Siqing, Bauer, Todd, Molineaux, Chris, Bennett, Mark K., Orford, Keith W., Papadopoulos, Kyriakos P., Padda, Sukhmani K., Shah, Sumit A., Colevas, A Dimitrios, Narayanan, Sujata, Fisher, George A., Supan, Dana, Wakelee, Heather A., Aoki, Rhonda, Pegram, Mark D., Villalobos, Victor M., Liu, Jie, Takimoto, Chris H., Chao, Mark, Volkmer, Jens-Peter, Majeti, Ravindra, Weissman, Irving L., Sikic, Branimir I., Yu, Wendy, Conlin, Alison, Ruzich, Janet, Lewis, Stacy, Acheson, Anupama, Kemmer, Kathleen, Perlewitz, Kelly, Moxon, Nicole M., Mellinger, Staci, McArthur, Heather, Juhler-Nøttrup, Trine, Desai, Jayesh, Markman, Ben, Sandhu, Shahneen, Gan, Hui, Friedlander, Michael L., Tran, Ben, Meniawy, Tarek, Lundy, Joanne, Colyer, Duncan, Ameratunga, Malaka, Norris, Christie, Yang, Jason, Li, Kang, Wang, Lai, Luo, Lusong, Qin, Zhen, Mu, Song, Tan, Xuemei, Song, James, Millward, Michael, Katz, Matthew H. G., Bauer, Todd W., Varadhachary, Gauri R., Acquavella, Nicolas, Merchant, Nipun, Petroni, Gina, Rahma, Osama E., Chen, Mei, Song, Yang, Puhlmann, Markus, Khattri, Arun, Brisson, Ryan, Harvey, Christopher, Shah, Jatin, Mateos, Maria Victoria, Matsumoto, Morio, Blacklock, Hilary, Rocafiguera, Albert Oriol, Goldschmidt, Hartmut, Iida, Shinsuke, Yehuda, Dina Ben, Ocio, Enrique, Rodríguez-Otero, Paula, Jagannath, Sundar, Lonial, Sagar, Kher, Uma, San-Miguel, Jesus, de Oliveira, Moacyr Ribeiro, Yimer, Habte, Rifkin, Robert, Schjesvold, Fredrik, Ghori, Razi, Spreafico, Anna, Lee, Victor, Ngan, Roger K. C., To, Ka Fai, Ahn, Myung Ju, Ng, Quan Sing, Lin, Jin-Ching, Swaby, Ramona F., Gause, Christine, Saraf, Sanatan, Chan, Anthony T. C., Lam, Elaine, Tannir, Nizar M., Meric-Bernstam, Funda, Gross, Matt, MacKinnon, Andy, Whiting, Sam, Voss, Martin, Yu, Evan Y., Albertini, Mark R., Ranheim, Erik A., Hank, Jacquelyn A., Zuleger, Cindy, McFarland, Thomas, Collins, Jennifer, Clements, Erin, Weber, Sharon, Weigel, Tracey, Neuman, Heather, Hartig, Greg, Mahvi, David, Henry, MaryBeth, Gan, Jacek, Yang, Richard, Carmichael, Lakeesha, Kim, KyungMann, Gillies, Stephen D., Sondel, Paul M., Subbiah, Vivek, Noffsinger, Lori, Hendricks, Kyle, Bosch, Marnix, Lee, Jay M., Lee, Mi-Heon, Goldman, Jonathan W., Baratelli, Felicita E., Schaue, Dorthe, Wang, Gerald, Rosen, Frances, Yanagawa, Jane, Walser, Tonya C., Lin, Ying Q., Adams, Sharon, Marincola, Franco M., Tumeh, Paul C., Abtin, Fereidoun, Suh, Robert, Reckamp, Karen, Wallace, William D., Zeng, Gang, Elashoff, David A., Sharma, Sherven, Dubinett, Steven M., Pavlick, Anna C., Gastman, Brian, Hanks, Brent, Keler, Tibor, Davis, Tom, Vitale, Laura A., Sharon, Elad, Morishima, Chihiro, Cheever, Martin, Heery, Christopher R., Kim, Joseph W., Lamping, Elizabeth, Marte, Jennifer, McMahon, Sheri, Cordes, Lisa, Fakhrejahani, Farhad, Madan, Ravi, Salazar, Rachel, Zhang, Maggie, Helwig, Christoph, Gulley, James L, Li, Roger, Amrhein, John, Cohen, Zvi, Champagne, Monique, Kamat, Ashish, Aznar, M. Angela, Labiano, Sara, Diaz-Lagares, Angel, Esteller, Manel, Sandoval, Juan, Barbee, Susannah D., Bellovin, David I., Timmer, John C., Wondyfraw, Nebiyu, Johnson, Susan, Park, Johanna, Chen, Amanda, Mkrtichyan, Mikayel, Razai, Amir S., Jones, Kyle S., Hata, Chelsie Y., Gonzalez, Denise, Deveraux, Quinn, Eckelman, Brendan P., Borges, Luis, Bhardwaj, Rukmini, Puri, Raj K., Suzuki, Akiko, Leland, Pamela, Joshi, Bharat H., Bartkowiak, Todd, Jaiswal, Ashvin, Ager, Casey, Ai, Midan, Budhani, Pratha, Chin, Renee, Hong, David, Curran, Michael, Hastings, William D., Pinzon-Ortiz, Maria, Murakami, Masato, Dobson, Jason R., Quinn, David, Wagner, Joel P., Rong, Xianhui, Shaw, Pamela, Dammassa, Ernesta, Guan, Wei, Dranoff, Glenn, Cao, Alexander, Fulton, Ross B., Leonardo, Steven, Fraser, Kathryn, Kangas, Takashi O., Ottoson, Nadine, Bose, Nandita, Huhn, Richard D., Graff, Jeremy, Lowe, Jamie, Gorden, Keith, Uhlik, Mark, O’Neill, Thomas, Widger, Jenifer, Crocker, Andrea, He, Li-Zhen, Weidlick, Jeffrey, Sundarapandiyan, Karuna, Ramakrishna, Venky, Storey, James, Thomas, Lawrence J., Goldstein, Joel, Marsh, Henry C., Grailer, Jamison, Gilden, Julia, Stecha, Pete, Garvin, Denise, Hartnett, Jim, Fan, Frank, Cong, Mei, Cheng, Zhi-jie Jey, Hinner, Marlon J., Aiba, Rachida-Siham Bel, Schlosser, Corinna, Jaquin, Thomas, Allersdorfer, Andrea, Berger, Sven, Wiedenmann, Alexander, Matschiner, Gabriele, Schüler, Julia, Moebius, Ulrich, Rothe, Christine, Shane, Olwill A., Horton, Brendan, Spranger, Stefani, Moreira, Dayson, Adamus, Tomasz, Zhao, Xingli, Swiderski, Piotr, Pal, Sumanta, Kortylewski, Marcin, Kosmides, Alyssa, Necochea, Kevin, Mahoney, Kathleen M., Shukla, Sachet A., Patsoukis, Nikolaos, Chaudhri, Apoorvi, Pham, Hung, Hua, Ping, Bu, Xia, Zhu, Baogong, Hacohen, Nir, Wu, Catherine J., Fritsch, Edward, Boussiotis, Vassiliki A., Freeman, Gordon J., Moran, Amy E., Polesso, Fanny, Lukaesko, Lisa, Rådestad, Emelie, Egevad, Lars, Sundberg, Berit, Henningsohn, Lars, Levitsky, Victor, Rafelson, William, Reagan, John L., Fast, Loren, Sasikumar, Pottayil, Sudarshan, Naremaddepalli, Ramachandra, Raghuveer, Gowda, Nagesh, Samiulla, Dodheri, Chandrasekhar, Talapaneni, Adurthi, Sreenivas, Mani, Jiju, Nair, Rashmi, Dhudashia, Amit, Gowda, Nagaraj, Ramachandra, Murali, Sankin, Alexander, Gartrell, Benjamin, Cumberbatch, Kerwin, Huang, Hongying, Stern, Joshua, Schoenberg, Mark, Zang, Xingxing, Swanson, Ryan, Kornacker, Michael, Evans, Lawrence, Rickel, Erika, Wolfson, Martin, Valsesia-Wittmann, Sandrine, Shekarian, Tala, Simard, François, Nailo, Rodrigo, Dutour, Aurélie, Jallas, Anne-Catherine, Caux, Christophe, and Marabelle, Aurélien
- Published
- 2016
- Full Text
- View/download PDF
216. Ancient duplication of Pax-6 homologs eyeless (ey) and twin of eyeless (toy)
- Author
-
Serb, J.M., Omilian, A., and Oakley, T.H.
- Subjects
Zoology and wildlife conservation - Abstract
Two Pax-6 homologs, eyeless (ey) and twin of eyeless (toy), play important and non-redundant roles in controlling Drosophila eye and nervous system development. Strong mutants of either toy or ey result in lethal headless phenotypes, suggesting that both genes are required for normal development. Nevertheless, toy has only been found in holometabolous insects, hypothesized to be the result of a recent gene duplication event during insect evolution. We present evidence that refutes a holometabolous duplication of ey and toy. New sequence data from Euphilomedes (Crustacea: Ostracoda) and Daphnia (Crustacea: Branchiopoda), coupled with phylogenetic analyses of Pax-6 genes, identify the presence of both paralogs in Crustacea. These results indicate that the duplication of ey and toy is ancient, probably occurring before the ancestor of the Pancrustacea (Crustacea + Insecta). Interestingly, the ostracod Euphilomedes appears to possess only a single Pax-6 gene, toy.
- Published
- 2003
217. Subcellular localization of AT-rich interactive domain1A protein expression is associated with survival in epithelial ovarian and peritoneal carcinoma
- Author
-
Maxwell, G.L., Bshara, W., Risinger, J.I., Tian, C., Omilian, A.R., Odunsi, K.O., Morrison, C., Conrads, T.P., and Consortium, W.
- Published
- 2014
- Full Text
- View/download PDF
218. Rate Acceleration and Long-branch Attraction in a Conserved Gene of Cryptic Daphniid (Crustacea) Species
- Author
-
Omilian, Angela R., primary and Taylor, Derek J., additional
- Published
- 2001
- Full Text
- View/download PDF
219. LCD in the pink
- Author
-
Omilian, Frank
- Subjects
LCD display ,Liquid crystal displays -- Usage -- Methods - Abstract
From time to time, the entire screen of my LCD gets a pink cast. What's causing this, and how can I fix it? (The monitor manufacturer wasn't able to help […]
- Published
- 2004
220. EFFECT OF LONG-TERM DIFFERENTIATED FERTILIZATION WITH FARMYARD MANURE AND MINERAL FERTILIZERS ON THE CONTENT OF AVAILABLE FORMS OF P, K AND Mg IN SOIL.
- Author
-
Sienkiewicz, Stanisław, Krzebietke, Sławomir, Wojnowska, Teresa, Żarczyński, Piotr, and Omilian, Małgorzata
- Abstract
Copyright of Journal of Elementology is the property of Journal of Elementology - issued by Polish Magnesium Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2009
221. Influence of endotoxin on the distribution of cephalosporins in rabbits.
- Author
-
Ganzinger, U., Haslberger, A., Schiel, H., Omilian-Rosso, R., and Schütze, E.
- Abstract
The concentration : time courses of six different cephalosporins were studied in serum and interstitial fluid from tissue cages after intravenous injection in normal and endotoxaemic rabbits. Circulatory and metabolic changes induced by endotoxin were similar to the altered organ function observed in patients with septicaemia. A significant shift of drug fractions, increase in the volume of distribution and prolonged mean residence times were observed in this model with ceftazidime, ceftriaxone and CPW 86–363, and were the result of specific changes in the peripheral compartment. The opposite findings were observed with cefotaxime, while latamoxef and cefoperazone resulted in no changes. [ABSTRACT FROM PUBLISHER]
- Published
- 1986
222. A Purine Nucleotide Biosynthesis Enzyme Guanosine Monophosphate Reductase Is a Suppressor of Melanoma Invasion
- Author
-
Wiam Bshara, Donna S. Shewach, Jeffrey C. Miecznikowski, Jeffrey J. Ackroyd, Qianqian Zhu, Mikhail A. Nikiforov, Shoshanna N. Zucker, Archis Bagati, Kalyana Moparthy, Carl Morrison, Michael Im, Keith S. Hoek, Natalia Fedtsova, Nadezhda I. Kozlova, A. E. Berman, Sudha Mannava, Andrei V. Gudkov, Joseph A. Wawrzyniak, Anna Bianchi-Smiraglia, and Angela Omilian
- Subjects
rac1 GTP-Binding Protein ,rho GTP-Binding Proteins ,GTP' ,GMP reductase ,Transplantation, Heterologous ,Guanosine ,Biology ,Guanosine triphosphate ,Article ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,chemistry.chemical_compound ,Mice ,0302 clinical medicine ,IMP Dehydrogenase ,IMP dehydrogenase ,Cell Movement ,Cell Line, Tumor ,Guanosine monophosphate ,medicine ,Animals ,Humans ,RNA, Small Interfering ,lcsh:QH301-705.5 ,Melanoma ,030304 developmental biology ,0303 health sciences ,Purine Nucleosides ,medicine.disease ,HCT116 Cells ,Molecular biology ,3. Good health ,Extracellular Matrix ,Phenotype ,lcsh:Biology (General) ,chemistry ,GMP Reductase ,030220 oncology & carcinogenesis ,Invadopodia ,Cancer research ,RNA Interference ,Guanosine Triphosphate - Abstract
SummaryMelanoma is one of the most aggressive types of human cancers, and the mechanisms underlying melanoma invasive phenotype are not completely understood. Here, we report that expression of guanosine monophosphate reductase (GMPR), an enzyme involved in de novo biosynthesis of purine nucleotides, was downregulated in the invasive stages of human melanoma. Loss- and gain-of-function experiments revealed that GMPR downregulates the amounts of several GTP-bound (active) Rho-GTPases and suppresses the ability of melanoma cells to form invadopodia, degrade extracellular matrix, invade in vitro, and grow as tumor xenografts in vivo. Mechanistically, we demonstrated that GMPR partially depletes intracellular GTP pools. Pharmacological inhibition of de novo GTP biosynthesis suppressed whereas addition of exogenous guanosine increased invasion of melanoma cells as well as cells from other cancer types. Our data identify GMPR as a melanoma invasion suppressor and establish a link between guanosine metabolism and Rho-GTPase-dependent melanoma cell invasion.
- Full Text
- View/download PDF
223. 31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one
- Author
-
Lundqvist, Andreas, van Hoef, Vincent, Zhang, Xiaonan, Wennerberg, Erik, Lorent, Julie, Witt, Kristina, Sanz, Laia Masvidal, Liang, Shuo, Murray, Shannon, Larsson, Ola, Kiessling, Rolf, Mao, Yumeng, Sidhom, John-William, Bessell, Catherine A., Havel, Jonathan, Schneck, Jonathan, Chan, Timothy A., Sachsenmeier, Eliot, Woods, David, Berglund, Anders, Ramakrishnan, Rupal, Sodre, Andressa, Weber, Jeffrey, Zappasodi, Roberta, Li, Yanyun, Qi, Jingjing, Wong, Philip, Sirard, Cynthia, Postow, Michael, Newman, Walter, Koon, Henry, Velcheti, Vamsidhar, Callahan, Margaret K., Wolchok, Jedd D., Merghoub, Taha, Lum, Lawrence G., Choi, Minsig, Thakur, Archana, Deol, Abhinav, Dyson, Gregory, Shields, Anthony, Haymaker, Cara, Uemura, Marc, Murthy, Ravi, James, Marihella, Wang, Daqing, Brevard, Julie, Monaghan, Catherine, Swann, Suzanne, Geib, James, Cornfeld, Mark, Chunduru, Srinivas, Agrawal, Sudhir, Yee, Cassian, Wargo, Jennifer, Patel, Sapna P., Amaria, Rodabe, Tawbi, Hussein, Glitza, Isabella, Woodman, Scott, Hwu, Wen-Jen, Davies, Michael A., Hwu, Patrick, Overwijk, Willem W., Bernatchez, Chantale, Diab, Adi, Massarelli, Erminia, Segal, Neil H., Ribrag, Vincent, Melero, Ignacio, Gangadhar, Tara C., Urba, Walter, Schadendorf, Dirk, Ferris, Robert L., Houot, Roch, Morschhauser, Franck, Logan, Theodore, Luke, Jason J., Sharfman, William, Barlesi, Fabrice, Ott, Patrick A., Mansi, Laura, Kummar, Shivaani, Salles, Gilles, Carpio, Cecilia, Meier, Roland, Krishnan, Suba, McDonald, Dan, Maurer, Matthew, Gu, Xuemin, Neely, Jaclyn, Suryawanshi, Satyendra, Levy, Ronald, Khushalani, Nikhil, Wu, Jennifer, Zhang, Jinyu, Basher, Fahmin, Rubinstein, Mark, Bucsek, Mark, Qiao, Guanxi, MacDonald, Cameron, Hylander, Bonnie, Repasky, Elizabeth, Chatterjee, Shilpak, Daenthanasanmak, Anusara, Chakraborty, Paramita, Toth, Kyle, Meek, Megan, Garrett-Mayer, Elizabeth, Nishimura, Michael, Paulos, Chrystal, Beeson, Craig, Yu, Xuezhong, Mehrotra, Shikhar, Zhao, Fei, Evans, Kathy, Xiao, Christine, Holtzhausen, Alisha, Hanks, Brent A., Scharping, Nicole, Menk, Ashley V., Moreci, Rebecca, Whetstone, Ryan, Dadey, Rebekah, Watkins, Simon, Ferris, Robert, Delgoffe, Greg M., Peled, Jonathan, Devlin, Sean, Staffas, Anna, Lumish, Melissa, Rodriguez, Kori Porosnicu, Ahr, Katya, Perales, Miguel, Giralt, Sergio, Taur, Ying, Pamer, Eric, van den Brink, Marcel R. M., Jenq, Robert, Annels, Nicola, Pandha, Hardev, Simpson, Guy, Mostafid, Hugh, Harrington, Kevin, Melcher, Alan, Grose, Mark, Davies, Bronwyn, Au, Gough, Karpathy, Roberta, Shafren, Darren, Ricca, Jacob, Zamarin, Dmitriy, Batista, Luciana, Marliot, Florence, Vasaturo, Angela, Carpentier, Sabrina, Poggionovo, Cécile, Frayssinet, Véronique, Fieschi, Jacques, Van den Eynde, Marc, Pagès, Franck, Galon, Jérôme, Hermitte, Fabienne, Smith, Sean G., Nguyen, Khue, Ravindranathan, Sruthi, Koppolu, Bhanu, Zaharoff, David, Schvartsman, Gustavo, Bassett, Roland, McQuade, Jennifer L., Haydu, Lauren E., Kline, Douglas, Chen, Xiufen, Fosco, Dominick, Kline, Justin, Overacre, Abigail, Chikina, Maria, Brunazzi, Erin, Shayan, Gulidanna, Horne, William, Kolls, Jay, Bruno, Tullia C., Workman, Creg, Vignali, Dario, Adusumilli, Prasad S., Ansa-Addo, Ephraim A, Li, Zihai, Gerry, Andrew, Sanderson, Joseph P., Howe, Karen, Docta, Roslin, Gao, Qian, Bagg, Eleanor A. L., Tribble, Nicholas, Maroto, Miguel, Betts, Gareth, Bath, Natalie, Melchiori, Luca, Lowther, Daniel E., Ramachandran, Indu, Kari, Gabor, Basu, Samik, Binder-Scholl, Gwendolyn, Chagin, Karen, Pandite, Lini, Holdich, Tom, Amado, Rafael, Zhang, Hua, Glod, John, Bernstein, Donna, Jakobsen, Bent, Mackall, Crystal, Wong, Ryan, Silk, Jonathan D., Adams, Katherine, Hamilton, Garth, Bennett, Alan D., Brett, Sara, Jing, Junping, Quattrini, Adriano, Saini, Manoj, Wiedermann, Guy, Brewer, Joanna, Duong, MyLinh, Lu, An, Chang, Peter, Mahendravada, Aruna, Shinners, Nicholas, Slawin, Kevin, Spencer, David M., Foster, Aaron E., Bayle, J. Henri, Bergamaschi, Cristina, Ng, Sinnie Sin Man, Nagy, Bethany, Jensen, Shawn, Hu, Xintao, Alicea, Candido, Fox, Bernard, Felber, Barbara, Pavlakis, George, Chacon, Jessica, Yamamoto, Tori, Garrabrant, Thomas, Cortina, Luis, Powell, Daniel J., Donia, Marco, Kjeldsen, Julie Westerlin, Andersen, Rikke, Westergaard, Marie Christine Wulff, Bianchi, Valentina, Legut, Mateusz, Attaf, Meriem, Dolton, Garry, Szomolay, Barbara, Ott, Sascha, Lyngaa, Rikke, Hadrup, Sine Reker, Sewell, Andrew Kelvin, Svane, Inge Marie, Fan, Aaron, Kumai, Takumi, Celis, Esteban, Frank, Ian, Stramer, Amanda, Blaskovich, Michelle A., Wardell, Seth, Fardis, Maria, Bender, James, Lotze, Michael T., Goff, Stephanie L., Zacharakis, Nikolaos, Assadipour, Yasmine, Prickett, Todd D., Gartner, Jared J., Somerville, Robert, Black, Mary, Xu, Hui, Chinnasamy, Harshini, Kriley, Isaac, Lu, Lily, Wunderlich, John, Robbins, Paul F., Rosenberg, Steven, Feldman, Steven A., Trebska-McGowan, Kasia, Malekzadeh, Parisa, Payabyab, Eden, Sherry, Richard, Gokuldass, Aishwarya, Kopits, Charlene, Rabinovich, Brian, Green, Daniel S., Kamenyeva, Olena, Zoon, Kathryn C., Annunziata, Christina M., Hammill, Joanne, Helsen, Christopher, Aarts, Craig, Bramson, Jonathan, Harada, Yui, Yonemitsu, Yoshikazu, Mwawasi, Kenneth, Denisova, Galina, Giri, Rajanish, Jin, Benjamin, Campbell, Tracy, Draper, Lindsey M., Stevanovic, Sanja, Yu, Zhiya, Weissbrich, Bianca, Restifo, Nicholas P., Trimble, Cornelia L., Hinrichs, Christian S., Tsang, Kwong, Fantini, Massimo, Hodge, James W., Fujii, Rika, Fernando, Ingrid, Jochems, Caroline, Heery, Christopher, Gulley, James, Soon-Shiong, Patrick, Schlom, Jeffrey, Jing, Weiqing, Gershan, Jill, Blitzer, Grace, Weber, James, McOlash, Laura, Johnson, Bryon D., Kiany, Simin, Gangxiong, Huang, Kleinerman, Eugenie S., Klichinsky, Michael, Ruella, Marco, Shestova, Olga, Kenderian, Saad, Kim, Miriam, Scholler, John, June, Carl H., Gill, Saar, Moogk, Duane, Zhong, Shi, Liadi, Ivan, Rittase, William, Fang, Victoria, Dougherty, Janna, Perez-Garcia, Arianne, Osman, Iman, Zhu, Cheng, Varadarajan, Navin, Frey, Alan, Krogsgaard, Michelle, Landi, Daniel, Fousek, Kristen, Mukherjee, Malini, Shree, Ankita, Joseph, Sujith, Bielamowicz, Kevin, Byrd, Tiara, Ahmed, Nabil, Hegde, Meenakshi, Lee, Sylvia, Byrd, David, Thompson, John, Bhatia, Shailender, Tykodi, Scott, Delismon, Judy, Chu, Liz, Abdul-Alim, Siddiq, Ohanian, Arpy, DeVito, Anna Marie, Riddell, Stanley, Margolin, Kim, Magalhaes, Isabelle, Mattsson, Jonas, Uhlin, Michael, Nemoto, Satoshi, Villarroel, Patricio Pérez, Nakagawa, Ryosuke, Mule, James J., Mailloux, Adam W., Mata, Melinda, Nguyen, Phuong, Gerken, Claudia, DeRenzo, Christopher, Gottschalk, Stephen, Mathieu, Mélissa, Pelletier, Sandy, Stagg, John, Turcotte, Simon, Minutolo, Nicholas, Sharma, Prannda, Tsourkas, Andrew, Mockel-Tenbrinck, Nadine, Mauer, Daniela, Drechsel, Katharina, Barth, Carola, Freese, Katharina, Kolrep, Ulrike, Schult, Silke, Assenmacher, Mario, Kaiser, Andrew, Mullinax, John, Hall, MacLean, Le, Julie, Kodumudi, Krithika, Royster, Erica, Richards, Allison, Gonzalez, Ricardo, Sarnaik, Amod, Pilon-Thomas, Shari, Nielsen, Morten, Krarup-Hansen, Anders, Hovgaard, Dorrit, Petersen, Michael Mørk, Loya, Anand Chainsukh, Junker, Niels, Rivas, Charlotte, Parihar, Robin, Rooney, Cliona M., Qin, Haiying, Nguyen, Sang, Su, Paul, Burk, Chad, Duncan, Brynn, Kim, Bong-Hyun, Kohler, M. Eric, Fry, Terry, Rao, Arjun A., Teyssier, Noam, Pfeil, Jacob, Sgourakis, Nikolaos, Salama, Sofie, Haussler, David, Richman, Sarah A., Nunez-Cruz, Selene, Gershenson, Zack, Mourelatos, Zissimos, Barrett, David, Grupp, Stephan, Milone, Michael, Rodriguez-Garcia, Alba, Robinson, Matthew K., Adams, Gregory P., Santos, João, Havunen, Riikka, Siurala, Mikko, Cervera-Carrascón, Víctor, Parviainen, Suvi, Antilla, Marjukka, Hemminki, Akseli, Sethuraman, Jyothi, Santiago, Laurelis, Chen, Jie Qing, Dai, Zhimin, Sha, Huizi, Su, Shu, Ding, Naiqing, Liu, Baorui, Pasetto, Anna, Helman, Sarah R., Rosenberg, Steven A., Burgess, Melissa, Zhang, Hui, Lee, Tien, Klingemann, Hans, Nghiem, Paul, Kirkwood, John M., Rossi, John M., Sherman, Marika, Xue, Allen, Shen, Yueh-wei, Navale, Lynn, Kochenderfer, James N., Bot, Adrian, Veerapathran, Anandaraman, Wiener, Doris, Waller, Edmund K., Li, Jian-Ming, Petersen, Christopher, Blazar, Bruce R., Li, Jingxia, Giver, Cynthia R., Wang, Ziming, Grossenbacher, Steven K., Sturgill, Ian, Canter, Robert J., Murphy, William J., Zhang, Congcong, Burger, Michael C., Jennewein, Lukas, Waldmann, Anja, Mittelbronn, Michel, Tonn, Torsten, Steinbach, Joachim P., Wels, Winfried S., Williams, Jason B., Zha, Yuanyuan, Gajewski, Thomas F., Williams, LaTerrica C., Krenciute, Giedre, Kalra, Mamta, Louis, Chrystal, Xin, Gang, Schauder, David, Jiang, Aimin, Joshi, Nikhil, Cui, Weiguo, Zeng, Xue, Zhao, Zeguo, Hamieh, Mohamad, Eyquem, Justin, Gunset, Gertrude, Bander, Neil, Sadelain, Michel, Askmyr, David, Abolhalaj, Milad, Lundberg, Kristina, Greiff, Lennart, Lindstedt, Malin, Angell, Helen K., Kim, Kyoung-Mee, Kim, Seung-Tae, Kim, Sung, Sharpe, Alan D., Ogden, Julia, Davenport, Anna, Hodgson, Darren R., Barrett, Carl, Lee, Jeeyun, Kilgour, Elaine, Hanson, Jodi, Caspell, Richard, Karulin, Alexey, Lehmann, Paul, Ansari, Tameem, Schiller, Annemarie, Sundararaman, Srividya, Roen, Diana, Ayers, Mark, Levitan, Diane, Arreaza, Gladys, Liu, Fang, Mogg, Robin, Bang, Yung-Jue, O’Neil, Bert, Cristescu, Razvan, Friedlander, Philip, Wassman, Karl, Kyi, Chrisann, Oh, William, Bhardwaj, Nina, Bornschlegl, Svetlana, Gustafson, Michael P., Gastineau, Dennis A., Parney, Ian F., Dietz, Allan B., Carvajal-Hausdorf, Daniel, Mani, Nikita, Schalper, Kurt, Rimm, David, Chang, Serena, Kurland, John, Ahlers, Christoph Matthias, Jure-Kunkel, Maria, Cohen, Lewis, Maecker, Holden, Kohrt, Holbrook, Chen, Shuming, Crabill, George, Pritchard, Theresa, McMiller, Tracee, Pardoll, Drew, Pan, Fan, Topalian, Suzanne, Danaher, Patrick, Warren, Sarah, Dennis, Lucas, White, Andrew M., D’Amico, Leonard, Geller, Melissa, Disis, Mary L., Beechem, Joseph, Odunsi, Kunle, Fling, Steven, Derakhshandeh, Roshanak, Webb, Tonya J., Dubois, Sigrid, Conlon, Kevin, Bryant, Bonita, Hsu, Jennifer, Beltran, Nancy, Müller, Jürgen, Waldmann, Thomas, Duhen, Rebekka, Duhen, Thomas, Thompson, Lucas, Montler, Ryan, Weinberg, Andrew, Kates, Max, Early, Brandon, Yusko, Erik, Schreiber, Taylor H., Bivalacqua, Trinity J., Lunceford, Jared, Nebozhyn, Michael, Murphy, Erin, Loboda, Andrey, Kaufman, David R., Albright, Andrew, Cheng, Jonathan, Kang, S. Peter, Shankaran, Veena, Piha-Paul, Sarina A., Yearley, Jennifer, Seiwert, Tanguy, Ribas, Antoni, McClanahan, Terrill K., Sher, Xinwei, Liu, Xiao Qiao, Joe, Andrew, Plimack, Elizabeth, Forrest-Hay, Alex, Guyre, Cheryl A., Narumiya, Kohei, Delcommenne, Marc, Hirsch, Heather A., Deshpande, Amit, Reeves, Jason, Shu, Jenny, Zi, Tong, Michaelson, Jennifer, Law, Debbie, Trehu, Elizabeth, Sathyanaryanan, Sriram, Hodkinson, Brendan P., Hutnick, Natalie A., Schaffer, Michael E., Gormley, Michael, Hulett, Tyler, Ballesteros-Merino, Carmen, Dubay, Christopher, Afentoulis, Michael, Reddy, Ashok, David, Larry, Jayant, Kumar, Agrawal, Swati, Agrawal, Rajendra, Jeyakumar, Ghayathri, Kim, Seongho, Kim, Heejin, Silski, Cynthia, Suisham, Stacey, Heath, Elisabeth, Vaishampayan, Ulka, Vandeven, Natalie, Viller, Natasja Nielsen, O’Connor, Alison, Chen, Hui, Bossen, Bolette, Sievers, Eric, Uger, Robert, Johnson, Lisa, Kao, Hsiang-Fong, Hsiao, Chin-Fu, Lai, Shu-Chuan, Wang, Chun-Wei, Ko, Jenq-Yuh, Lou, Pei-Jen, Lee, Tsai-Jan, Liu, Tsang-Wu, Hong, Ruey-Long, Kearney, Staci J., Black, Joshua C., Landis, Benjamin J., Koegler, Sally, Hirsch, Brooke, Gianani, Roberto, Kim, Jeffrey, He, Ming-Xiao, Zhang, Bingqing, Su, Nan, Luo, Yuling, Ma, Xiao-Jun, Park, Emily, Kim, Dae Won, Copploa, Domenico, Kothari, Nishi, doo Chang, Young, Kim, Richard, Kim, Namyong, Lye, Melvin, Wan, Ee, Knaus, Hanna A., Berglund, Sofia, Hackl, Hubert, Karp, Judith E., Gojo, Ivana, Luznik, Leo, Hong, Henoch S., Koch, Sven D., Scheel, Birgit, Gnad-Vogt, Ulrike, Kallen, Karl-Josef, Wiegand, Volker, Backert, Linus, Kohlbacher, Oliver, Hoerr, Ingmar, Fotin-Mleczek, Mariola, Billingsley, James M., Koguchi, Yoshinobu, Conrad, Valerie, Miller, William, Gonzalez, Iliana, Poplonski, Tomasz, Meeuwsen, Tanisha, Howells-Ferreira, Ana, Rattray, Rogan, Campbell, Mary, Bifulco, Carlo, Bahjat, Keith, Curti, Brendan, Vetsika, E-K, Kallergi, G., Aggouraki, Despoina, Lyristi, Z., Katsarlinos, P., Koinis, Filippos, Georgoulias, V., Kotsakis, Athanasios, Martin, Nathan T., Aeffner, Famke, Cerkovnik, Logan, Pratte, Luke, Kim, Rebecca, Krueger, Joseph, Martínez-Usatorre, Amaia, Jandus, Camilla, Donda, Alena, Carretero-Iglesia, Laura, Speiser, Daniel E., Zehn, Dietmar, Rufer, Nathalie, Romero, Pedro, Panda, Anshuman, Mehnert, Janice, Hirshfield, Kim M., Riedlinger, Greg, Damare, Sherri, Saunders, Tracie, Sokol, Levi, Stein, Mark, Poplin, Elizabeth, Rodriguez-Rodriguez, Lorna, Silk, Ann, Chan, Nancy, Frankel, Melissa, Kane, Michael, Malhotra, Jyoti, Aisner, Joseph, Kaufman, Howard L., Ali, Siraj, Ross, Jeffrey, White, Eileen, Bhanot, Gyan, Ganesan, Shridar, Monette, Anne, Bergeron, Derek, Amor, Amira Ben, Meunier, Liliane, Caron, Christine, Morou, Antigoni, Kaufmann, Daniel, Liberman, Moishe, Jurisica, Igor, Mes-Masson, Anne-Marie, Hamzaoui, Kamel, Lapointe, Rejean, Mongan, Ann, Ku, Yuan-Chieh, Tom, Warren, Sun, Yongming, Pankov, Alex, Looney, Tim, Au-Young, Janice, Hyland, Fiona, Conroy, Jeff, Morrison, Carl, Glenn, Sean, Burgher, Blake, Ji, He, Gardner, Mark, Omilian, Angela R., Bshara, Wiam, Angela, Omilian, Obeid, Joseph M., Erdag, Gulsun, Smolkin, Mark E., Deacon, Donna H., Patterson, James W., Chen, Lieping, Bullock, Timothy N., Slingluff, Craig L., Loffredo, John T., Vuyyuru, Raja, Beyer, Sophie, Spires, Vanessa M., Fox, Maxine, Ehrmann, Jon M., Taylor, Katrina A., Korman, Alan J., Graziano, Robert F., Page, David, Sanchez, Katherine, Martel, Maritza, De Macedo, Mariana Petaccia, Qin, Yong, Reuben, Alex, Spencer, Christine, Guindani, Michele, Racolta, Adriana, Kelly, Brian, Jones, Tobin, Polaske, Nathan, Theiss, Noah, Robida, Mark, Meridew, Jeffrey, Habensus, Iva, Zhang, Liping, Pestic-Dragovich, Lidija, Tang, Lei, Sullivan, Ryan J., Olencki, Thomas, Hutson, Thomas, Roder, Joanna, Blackmon, Shauna, Roder, Heinrich, Stewart, John, Amin, Asim, Ernstoff, Marc S., Clark, Joseph I., Atkins, Michael B., Sosman, Jeffrey, McDermott, David F., Kluger, Harriet, Halaban, Ruth, Snzol, Mario, Asmellash, Senait, Steingrimsson, Arni, Wang, Chichung, Roman, Kristin, Clement, Amanda, Downing, Sean, Hoyt, Clifford, Harder, Nathalie, Schmidt, Guenter, Schoenmeyer, Ralf, Brieu, Nicolas, Yigitsoy, Mehmet, Madonna, Gabriele, Botti, Gerardo, Grimaldi, Antonio, Ascierto, Paolo A., Huss, Ralf, Athelogou, Maria, Hessel, Harald, Buchner, Alexander, Stief, Christian, Binnig, Gerd, Kirchner, Thomas, Sellappan, Shankar, Thyparambil, Sheeno, Schwartz, Sarit, Cecchi, Fabiola, Nguyen, Andrew, Vaske, Charles, Hembrough, Todd, Spacek, Jan, Vocka, Michal, Zavadova, Eva, Skalova, Helena, Dundr, Pavel, Petruzelka, Lubos, Francis, Nicole, Tilman, Rau T., Hartmann, Arndt, Netikova, Irena, Stump, Julia, Tufman, Amanda, Berger, Frank, Neuberger, Michael, Hatz, Rudolf, Lindner, Michael, Sanborn, Rachel E., Handy, John, Huber, Rudolf M., Winter, Hauke, Reu, Simone, Sun, Cheng, Xiao, Weihua, Tian, Zhigang, Arora, Kshitij, Desai, Niyati, Kulkarni, Anupriya, Rajurkar, Mihir, Rivera, Miguel, Deshpande, Vikram, Ting, David, Tsai, Katy, Nosrati, Adi, Goldinger, Simone, Hamid, Omid, Algazi, Alain, Tumeh, Paul, Hwang, Jimmy, Liu, Jacqueline, Chen, Lawrence, Dummer, Reinhard, Rosenblum, Michael, Daud, Adil, Tsao, Tsu-Shuen, Ashworth-Sharpe, Julia, Johnson, Donald, Bhaumik, Srabani, Bieniarz, Christopher, Couto, Joseph, Farrell, Michael, Ghaffari, Mahsa, Hubbard, Antony, Kosmeder, Jerome, Lee, Cleo, Marner, Erin, Uribe, Diana, Zhang, Hongjun, Zhang, Jian, Zhang, Wenjun, Zhu, Yifei, Morrison, Larry, Tsujikawa, Takahiro, Borkar, Rohan N., Azimi, Vahid, Kumar, Sushil, Thibault, Guillaume, Mori, Motomi, El Rassi, Edward, Clayburgh, Daniel R., Kulesz-Martin, Molly F., Flint, Paul W., Coussens, Lisa M., Villabona, Lisa, Masucci, Giuseppe V., Geiss, Gary, Birditt, Brian, Mei, Qian, Huang, Alan, Eagan, Maribeth A., Ignacio, Eduardo, Elliott, Nathan, Dunaway, Dwayne, Jung, Jaemyeong, Merritt, Chris, Sprague, Isaac, Webster, Philippa, Liang, Yan, Wenthe, Jessica, Enblad, Gunilla, Karlsson, Hannah, Essand, Magnus, Savoldo, Barbara, Dotti, Gianpietro, Höglund, Martin, Brenner, Malcolm K., Hagberg, Hans, Loskog, Angelica, Bernett, Matthew J., Moore, Gregory L., Hedvat, Michael, Bonzon, Christine, Chu, Seung, Rashid, Rumana, Avery, Kendra N., Muchhal, Umesh, Desjarlais, John, Kraman, Matthew, Kmiecik, Katarzyna, Allen, Natalie, Faroudi, Mustapha, Zimarino, Carlo, Wydro, Mateusz, Doody, Jacqueline, Srinivasa, Sreesha P., Govindappa, Nagaraja, Reddy, Praveen, Dubey, Aparajita, Periyasamy, Sankar, Adekandi, Madhukara, Dey, Chaitali, Joy, Mary, van Loo, Pieter Fokko, Veninga, Henrike, Shamsili, Setareh, Throsby, Mark, Dolstra, Harry, Bakker, Lex, Alva, Ajjai, Gschwendt, Juergen, Loriot, Yohann, Bellmunt, Joaquim, Feng, Dai, Poehlein, Christian, Powles, Thomas, Antonarakis, Emmanuel S., Drake, Charles G., Wu, Haiyan, De Bono, Johann, Bannerji, Rajat, Byrd, John, Gregory, Gareth, Opat, Stephen, Shortt, Jake, Yee, Andrew J., Raje, Noopur, Thompson, Seth, Balakumaran, Arun, Kumar, Shaji, Rini, Brian I., Choueiri, Toni K., Mariani, Mariangela, Albiges, Laurence, Haanen, John B., Larkin, James, Schmidinger, Manuela, Magazzù, Domenico, di Pietro, Alessandra, Motzer, Robert J., Borch, Troels Holz, Kongsted, Per, Pedersen, Magnus, Met, Özcan, Boudadi, Karim, Wang, Hao, Vasselli, James, Baughman, Jan E., Wigginton, Jon, Abdallah, Rehab, Ross, Ashley, Park, Jiwon, Grossenbacher, Steven, Luna, Jesus I., Withers, Sita, Culp, William, Chen, Mingyi, Monjazeb, Arta, Kent, Michael S., Chandran, Smita, Danforth, David, Yang, James, Klebanoff, Christopher, Goff, Stephanie, Paria, Biman, Sabesan, Arvind, Srivastava, Abhishek, Kammula, Udai, Richards, Jon, Faries, Mark, Andtbacka, Robert H. I., Diaz, Luis A., Le, Dung T., Yoshino, Takayuki, André, Thierry, Bendell, Johanna, Koshiji, Minori, Zhang, Yayan, Kang, S Peter, Lam, Bao, Jäger, Dirk, Bauer, Todd M., Wang, Judy S., Lee, Jean K., Manji, Gulam A., Kudchadkar, Ragini, Kauh, John S., Tang, Shande, Laing, Naomi, Falchook, Gerald, Garon, Edward B., Halmos, Balazs, Rina, Hui, Leighl, Natasha, Lee, Sung Sook, Walsh, William, Dragnev, Konstanin, Piperdi, Bilal, Rodriguez, Luis Paz-Ares, Shinwari, Nabeegha, Wei, Ziewn, Maas, Mary L, Deeds, Michael, Armstrong, Adam, Peterson, Tim, Steinmetz, Sue, Herzog, Thomas, Backes, Floor J., Copeland, Larry, Del Pilar Estevez Diz, Maria, Hare, Thomas W., Huh, Warner, Kim, Byoung-Gie, Moore, Kathleen M., Oaknin, Ana, Small, William, Tewari, Krishnansu S., Monk, Bradley J., Kamat, Ashish M., Nam, Kijoeng, De Santis, Maria, Dreicer, Robert, Hahn, Noah M., Perini, Rodolfo, Siefker-Radtke, Arlene, Sonpavde, Guru, de Wit, Ronald, Witjes, J. Alfred, Keefe, Stephen, Bajorin, Dean, Armand, Philippe, Kuruvilla, John, Moskowitz, Craig, Hamadani, Mehdi, Zinzani, Pier Luigi, Chlosta, Sabine, Bartlett, Nancy, Sabado, Rachel, Saenger, Yvonne, William, Loging, Donovan, Michael Joseph, Sacris, Erlinda, Mandeli, John, Salazar, Andres M., Powderly, John, Brody, Joshua, Nemunaitis, John, Emens, Leisha, Patnaik, Amita, McCaffery, Ian, Miller, Richard, Laport, Ginna, Coveler, Andrew L., Smith, David C., Grilley-Olson, Juneko E., Goel, Sanjay, Gardai, Shyra J., Law, Che-Leung, Means, Gary, Manley, Thomas, Marrone, Kristen A., Rosner, Gary, Anagnostou, Valsamo, Riemer, Joanne, Wakefield, Jessica, Zanhow, Cynthia, Baylin, Stephen, Gitlitz, Barbara, Brahmer, Julie, Signoretti, Sabina, Li, Wenting, Schloss, Charles, Michot, Jean-Marie, Ding, Wei, Christian, Beth, Marinello, Patricia, Shipp, Margaret, Najjar, Yana G., Lin, Butterfield, Lisa H., Tarhini, Ahmad A., Davar, Diwakar, Zarour, Hassane, Rush, Elizabeth, Sander, Cindy, Fu, Siqing, Bauer, Todd, Molineaux, Chris, Bennett, Mark K., Orford, Keith W., Papadopoulos, Kyriakos P., Padda, Sukhmani K., Shah, Sumit A., Colevas, A Dimitrios, Narayanan, Sujata, Fisher, George A., Supan, Dana, Wakelee, Heather A., Aoki, Rhonda, Pegram, Mark D., Villalobos, Victor M., Liu, Jie, Takimoto, Chris H., Chao, Mark, Volkmer, Jens-Peter, Majeti, Ravindra, Weissman, Irving L., Sikic, Branimir I., Yu, Wendy, Conlin, Alison, Ruzich, Janet, Lewis, Stacy, Acheson, Anupama, Kemmer, Kathleen, Perlewitz, Kelly, Moxon, Nicole M., Mellinger, Staci, McArthur, Heather, Juhler-Nøttrup, Trine, Desai, Jayesh, Markman, Ben, Sandhu, Shahneen, Gan, Hui, Friedlander, Michael L., Tran, Ben, Meniawy, Tarek, Lundy, Joanne, Colyer, Duncan, Ameratunga, Malaka, Norris, Christie, Yang, Jason, Li, Kang, Wang, Lai, Luo, Lusong, Qin, Zhen, Mu, Song, Tan, Xuemei, Song, James, Millward, Michael, Katz, Matthew H. G., Bauer, Todd W., Varadhachary, Gauri R., Acquavella, Nicolas, Merchant, Nipun, Petroni, Gina, Rahma, Osama E., Chen, Mei, Song, Yang, Puhlmann, Markus, Khattri, Arun, Brisson, Ryan, Harvey, Christopher, Shah, Jatin, Mateos, Maria Victoria, Matsumoto, Morio, Blacklock, Hilary, Rocafiguera, Albert Oriol, Goldschmidt, Hartmut, Iida, Shinsuke, Yehuda, Dina Ben, Ocio, Enrique, Rodríguez-Otero, Paula, Jagannath, Sundar, Lonial, Sagar, Kher, Uma, San-Miguel, Jesus, de Oliveira, Moacyr Ribeiro, Yimer, Habte, Rifkin, Robert, Schjesvold, Fredrik, Ghori, Razi, Spreafico, Anna, Lee, Victor, Ngan, Roger K. C., To, Ka Fai, Ahn, Myung Ju, Ng, Quan Sing, Lin, Jin-Ching, Swaby, Ramona F., Gause, Christine, Saraf, Sanatan, Chan, Anthony T. C., Lam, Elaine, Tannir, Nizar M., Meric-Bernstam, Funda, Gross, Matt, MacKinnon, Andy, Whiting, Sam, Voss, Martin, Yu, Evan Y., Albertini, Mark R., Ranheim, Erik A., Hank, Jacquelyn A., Zuleger, Cindy, McFarland, Thomas, Collins, Jennifer, Clements, Erin, Weber, Sharon, Weigel, Tracey, Neuman, Heather, Hartig, Greg, Mahvi, David, Henry, MaryBeth, Gan, Jacek, Yang, Richard, Carmichael, Lakeesha, Kim, KyungMann, Gillies, Stephen D., Sondel, Paul M., Subbiah, Vivek, Noffsinger, Lori, Hendricks, Kyle, Bosch, Marnix, Lee, Jay M., Lee, Mi-Heon, Goldman, Jonathan W., Baratelli, Felicita E., Schaue, Dorthe, Wang, Gerald, Rosen, Frances, Yanagawa, Jane, Walser, Tonya C., Lin, Ying Q., Adams, Sharon, Marincola, Franco M., Tumeh, Paul C., Abtin, Fereidoun, Suh, Robert, Reckamp, Karen, Wallace, William D., Zeng, Gang, Elashoff, David A., Sharma, Sherven, Dubinett, Steven M., Pavlick, Anna C., Gastman, Brian, Hanks, Brent, Keler, Tibor, Davis, Tom, Vitale, Laura A., Sharon, Elad, Morishima, Chihiro, Cheever, Martin, Heery, Christopher R., Kim, Joseph W., Lamping, Elizabeth, Marte, Jennifer, McMahon, Sheri, Cordes, Lisa, Fakhrejahani, Farhad, Madan, Ravi, Salazar, Rachel, Zhang, Maggie, Helwig, Christoph, Gulley, James L, Li, Roger, Amrhein, John, Cohen, Zvi, Champagne, Monique, Kamat, Ashish, Aznar, M. Angela, Labiano, Sara, Diaz-Lagares, Angel, Esteller, Manel, Sandoval, Juan, Barbee, Susannah D., Bellovin, David I., Timmer, John C., Wondyfraw, Nebiyu, Johnson, Susan, Park, Johanna, Chen, Amanda, Mkrtichyan, Mikayel, Razai, Amir S., Jones, Kyle S., Hata, Chelsie Y., Gonzalez, Denise, Deveraux, Quinn, Eckelman, Brendan P., Borges, Luis, Bhardwaj, Rukmini, Puri, Raj K., Suzuki, Akiko, Leland, Pamela, Joshi, Bharat H., Bartkowiak, Todd, Jaiswal, Ashvin, Ager, Casey, Ai, Midan, Budhani, Pratha, Chin, Renee, Hong, David, Curran, Michael, Hastings, William D., Pinzon-Ortiz, Maria, Murakami, Masato, Dobson, Jason R., Quinn, David, Wagner, Joel P., Rong, Xianhui, Shaw, Pamela, Dammassa, Ernesta, Guan, Wei, Dranoff, Glenn, Cao, Alexander, Fulton, Ross B., Leonardo, Steven, Fraser, Kathryn, Kangas, Takashi O., Ottoson, Nadine, Bose, Nandita, Huhn, Richard D., Graff, Jeremy, Lowe, Jamie, Gorden, Keith, Uhlik, Mark, O’Neill, Thomas, Widger, Jenifer, Crocker, Andrea, He, Li-Zhen, Weidlick, Jeffrey, Sundarapandiyan, Karuna, Ramakrishna, Venky, Storey, James, Thomas, Lawrence J., Goldstein, Joel, Marsh, Henry C., Grailer, Jamison, Gilden, Julia, Stecha, Pete, Garvin, Denise, Hartnett, Jim, Fan, Frank, Cong, Mei, Cheng, Zhi-jie Jey, Hinner, Marlon J., Aiba, Rachida-Siham Bel, Schlosser, Corinna, Jaquin, Thomas, Allersdorfer, Andrea, Berger, Sven, Wiedenmann, Alexander, Matschiner, Gabriele, Schüler, Julia, Moebius, Ulrich, Rothe, Christine, Shane, Olwill A., Horton, Brendan, Spranger, Stefani, Moreira, Dayson, Adamus, Tomasz, Zhao, Xingli, Swiderski, Piotr, Pal, Sumanta, Kortylewski, Marcin, Kosmides, Alyssa, Necochea, Kevin, Mahoney, Kathleen M., Shukla, Sachet A., Patsoukis, Nikolaos, Chaudhri, Apoorvi, Pham, Hung, Hua, Ping, Bu, Xia, Zhu, Baogong, Hacohen, Nir, Wu, Catherine J., Fritsch, Edward, Boussiotis, Vassiliki A., Freeman, Gordon J., Moran, Amy E., Polesso, Fanny, Lukaesko, Lisa, Rådestad, Emelie, Egevad, Lars, Sundberg, Berit, Henningsohn, Lars, Levitsky, Victor, Rafelson, William, Reagan, John L., Fast, Loren, Sasikumar, Pottayil, Sudarshan, Naremaddepalli, Ramachandra, Raghuveer, Gowda, Nagesh, Samiulla, Dodheri, Chandrasekhar, Talapaneni, Adurthi, Sreenivas, Mani, Jiju, Nair, Rashmi, Dhudashia, Amit, Gowda, Nagaraj, Ramachandra, Murali, Sankin, Alexander, Gartrell, Benjamin, Cumberbatch, Kerwin, Huang, Hongying, Stern, Joshua, Schoenberg, Mark, Zang, Xingxing, Swanson, Ryan, Kornacker, Michael, Evans, Lawrence, Rickel, Erika, Wolfson, Martin, Valsesia-Wittmann, Sandrine, Shekarian, Tala, Simard, François, Nailo, Rodrigo, Dutour, Aurélie, Jallas, Anne-Catherine, Caux, Christophe, and Marabelle, Aurélien
- Subjects
Meeting Abstracts - Full Text
- View/download PDF
224. Influence of endotoxin on the distribution of cephalosporins in rabbits
- Author
-
H. Schiel, R. Omilian-Rosso, U. Ganzinger, E. Schütze, and A. Haslberger
- Subjects
Microbiology (medical) ,medicine.medical_specialty ,Cefotaxime ,Ceftazidime ,Biology ,Body Temperature ,chemistry.chemical_compound ,Pharmacokinetics ,Interstitial fluid ,Internal medicine ,Sepsis ,medicine ,Animals ,Pharmacology (medical) ,Pharmacology ,Volume of distribution ,Latamoxef ,Cephalosporins ,Endotoxins ,Cefoperazone ,Kinetics ,Infectious Diseases ,Endocrinology ,chemistry ,Immunology ,Injections, Intravenous ,Ceftriaxone ,sense organs ,Rabbits ,medicine.drug - Abstract
The concentration: time courses of six different cephalosporins were studied in serum and interstitial fluid from issue cages after intravenous injection in normal and endotoxaemic rabbits. Circulatory and metabolic changes induced by endotoxin were similar to the altered organ function observed in patients with septicaemia. A significant shift of drug fractions, increase in the volume of distribution and prolonged mean residence times were observed in this model with ceftazidime, ceftriaxone and CPW 86-363, and were the result of specific changes in the peripheral compartment. The opposite findings were observed with cefotaxime, while latamoxef and cefoperazone resulted in no changes.
- Published
- 1986
225. Additional file 3: Table S1. of Frequency of breast cancer subtypes among African American women in the AMBER consortium
- Author
-
Allott, Emma, Geradts, Joseph, Cohen, Stephanie, Thaer Khoury, Zirpoli, Gary, Wiam Bshara, Davis, Warren, Omilian, Angela, Nair, Priya, Ondracek, Rochelle, Cheng, Ting-Yuan, C. Miller, Hwang, Helena, Thorne, Leigh, OâConnor, Siobhan, Bethea, Traci, Bell, Mary, Zhiyuan Hu, Li, Yan, Kirk, Erin, Xuezheng Sun, Ruiz-Narvaez, Edward, Perou, Charles, Palmer, Julie, Olshan, Andrew, Ambrosone, Christine, and Troester, Melissa
- Subjects
viruses ,bacteria ,skin and connective tissue diseases ,3. Good health - Abstract
Classification of luminal breast cancer cases using data from medical records in the AMBER consortium. (DOCX 12 kb)
226. Effect of long-term differentiated fertilization with farmyard manure and mineral fertilizers on the content of available forms of P, K and Mg in soil,Oddziaływanie wieloletniego zróżnicowanego nawȯenia obornikiem i nawozami mineralnymi na zawartość przyswajalnych form P, K I Mg W glebie
- Author
-
Sienkiewicz, S., Sławomir Krzebietke, Wojnowska, T., Zarczyński, P., and Omilian, M.
227. Jakie są granice inwestowania w dostęp do wiedzy? Analiza kosztów zakupu i statystyk wykorzystania zasobów elektornicznych w Bibliotece Głównej Akademii Medycznej w Gdańsku w latach 2003-2007
- Author
-
Modrzewska, Mirosława, Małgorzata Omilian-Mucharska, Grygorowicz, Anna, and Kraszewska, Elżbieta
228. Additional file 3: Table S1. of Frequency of breast cancer subtypes among African American women in the AMBER consortium
- Author
-
Allott, Emma, Geradts, Joseph, Cohen, Stephanie, Thaer Khoury, Zirpoli, Gary, Wiam Bshara, Davis, Warren, Omilian, Angela, Nair, Priya, Ondracek, Rochelle, Cheng, Ting-Yuan, C. Miller, Hwang, Helena, Thorne, Leigh, OâConnor, Siobhan, Bethea, Traci, Bell, Mary, Zhiyuan Hu, Li, Yan, Kirk, Erin, Xuezheng Sun, Ruiz-Narvaez, Edward, Perou, Charles, Palmer, Julie, Olshan, Andrew, Ambrosone, Christine, and Troester, Melissa
- Subjects
viruses ,bacteria ,skin and connective tissue diseases ,3. Good health - Abstract
Classification of luminal breast cancer cases using data from medical records in the AMBER consortium. (DOCX 12 kb)
229. Additional file 6: Table S3. of Frequency of breast cancer subtypes among African American women in the AMBER consortium
- Author
-
Allott, Emma, Geradts, Joseph, Cohen, Stephanie, Thaer Khoury, Zirpoli, Gary, Wiam Bshara, Davis, Warren, Omilian, Angela, Nair, Priya, Ondracek, Rochelle, Cheng, Ting-Yuan, C. Miller, Hwang, Helena, Thorne, Leigh, OâConnor, Siobhan, Bethea, Traci, Bell, Mary, Zhiyuan Hu, Li, Yan, Kirk, Erin, Xuezheng Sun, Ruiz-Narvaez, Edward, Perou, Charles, Palmer, Julie, Olshan, Andrew, Ambrosone, Christine, and Troester, Melissa
- Subjects
3. Good health - Abstract
Odds ratios and 95% confidence intervals for age and menopauseb status at diagnosis by six-marker immunohistochemistry-defined subtypea in the AMBER consortium. (DOCX 13 kb)
230. Additional file 6: Table S3. of Frequency of breast cancer subtypes among African American women in the AMBER consortium
- Author
-
Allott, Emma, Geradts, Joseph, Cohen, Stephanie, Thaer Khoury, Zirpoli, Gary, Wiam Bshara, Davis, Warren, Omilian, Angela, Nair, Priya, Ondracek, Rochelle, Cheng, Ting-Yuan, C. Miller, Hwang, Helena, Thorne, Leigh, OâConnor, Siobhan, Bethea, Traci, Bell, Mary, Zhiyuan Hu, Li, Yan, Kirk, Erin, Xuezheng Sun, Ruiz-Narvaez, Edward, Perou, Charles, Palmer, Julie, Olshan, Andrew, Ambrosone, Christine, and Troester, Melissa
- Subjects
3. Good health - Abstract
Odds ratios and 95% confidence intervals for age and menopauseb status at diagnosis by six-marker immunohistochemistry-defined subtypea in the AMBER consortium. (DOCX 13 kb)
231. Predicting response to checkpoint inhibitors in melanoma beyond PD-L1 and mutational burden.
- Author
-
Morrison, Carl, Pabla, Sarabjot, Conroy, Jeffrey M., Nesline, Mary K., Glenn, Sean T., Dressman, Devin, Papanicolau-Sengos, Antonios, Burgher, Blake, Andreas, Jonathan, Giamo, Vincent, Qin, Moachun, Wang, Yirong, Lenzo, Felicia L., Omilian, Angela, Bshara, Wiam, Zibelman, Matthew, Ghatalia, Pooja, Dragnev, Konstantin, Shirai, Keisuke, and Madden, Katherine G.
- Subjects
MELANOMA treatment ,PROGRAMMED cell death 1 receptors ,GENETIC mutation - Abstract
Background: Immune checkpoint inhibitors (ICIs) have changed the clinical management of melanoma. However, not all patients respond, and current biomarkers including PD-L1 and mutational burden show incomplete predictive performance. The clinical validity and utility of complex biomarkers have not been studied in melanoma. Methods: Cutaneous metastatic melanoma patients at eight institutions were evaluated for PD-L1 expression, CD8
+ T-cell infiltration pattern, mutational burden, and 394 immune transcript expression. PD-L1 IHC and mutational burden were assessed for association with overall survival (OS) in 94 patients treated prior to ICI approval by the FDA (historical-controls), and in 137 patients treated with ICIs. Unsupervised analysis revealed distinct immune-clusters with separate response rates. This comprehensive immune profiling data were then integrated to generate a continuous Response Score (RS) based upon response criteria (RECIST v.1.1). RS was developed using a single institution training cohort (n = 48) and subsequently tested in a separate eight institution validation cohort (n = 29) to mimic a real-world clinical scenario. Results: PD-L1 positivity ≥1% correlated with response and OS in ICI-treated patients, but demonstrated limited predictive performance. High mutational burden was associated with response in ICI-treated patients, but not with OS. Comprehensive immune profiling using RS demonstrated higher sensitivity (72.2%) compared to PD-L1 IHC (34.25%) and tumor mutational burden (32.5%), but with similar specificity. Conclusions: In this study, the response score derived from comprehensive immune profiling in a limited melanoma cohort showed improved predictive performance as compared to PD-L1 IHC and tumor mutational burden. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
232. mTOR pathway gene expression in association with race and clinicopathological characteristics in Black and White breast cancer patients
- Author
-
Mmadili N. Ilozumba, Song Yao, Adana A. M. Llanos, Angela R. Omilian, Weizhou Zhang, Susmita Datta, Chi-Chen Hong, Warren Davis, Thaer Khoury, Elisa V. Bandera, Michael Higgins, Christine B. Ambrosone, and Ting-Yuan David Cheng
- Subjects
mTOR ,Gene expression ,Breast cancer ,Race ,Clinicopathological characteristics ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Aberrant activation of the mammalian Target of Rapamycin (mTOR) pathway has been linked to obesity and endocrine therapy resistance, factors that may contribute to Black-White disparities in breast cancer outcomes. We evaluated associations of race and clinicopathological characteristics with mRNA expression of key mTOR pathway genes in breast tumors. Methods Surgical tumor tissue blocks were collected from 367 newly diagnosed breast cancer patients (190 Black and 177 White). Gene expression of AKT1, EIF4EBP1, MTOR, RPS6KB2, and TSC1 were quantified by NanoString nCounter. Differential gene expression was assessed using linear regression on log2-transformed values. Gene expression and DNA methylation data from TCGA were used for validation and investigation of race-related differences. Results Compared to White women, Black women had relative under-expression of AKT1 (log2 fold-change = − 0.31, 95% CI − 0.44, − 0.18) and RPS6KB2 (log2 fold-change = − 0.11, 95% CI − 0.19, − 0.03). Higher vs. lower tumor grade was associated with relative over-expression of EIF4EBP1 and RPS6KB2, but with lower expression of TSC1. Compared to luminal tumors, triple-negative tumors had relative under-expression of TSC1 (log2 fold-change = − 0.42, 95% CI − 0.22, − 0.01). The results were similar in the TCGA breast cancer dataset. Post-hoc analyses identified differential CpG methylation within the AKT1 and RPS6KB2 locus between Black and White women. Conclusions Over-expression of RPS6KB2 and EIF4EBP1 and under-expression of TSC1 might be indicators of more aggressive breast cancer phenotypes. Differential expression of AKT1 and RPS6KB2 by race warrants further investigation to elucidate their roles in racial disparities of treatment resistance and outcomes between Black and White women with breast cancer.
- Published
- 2022
- Full Text
- View/download PDF
233. Multiplexed digital spatial profiling of invasive breast tumors from Black and White women
- Author
-
Angela R. Omilian, Haiyang Sheng, Chi‐Chen Hong, Elisa V. Bandera, Thaer Khoury, Christine B. Ambrosone, and Song Yao
- Subjects
B7‐H3 ,breast cancer ,digital spatial profiling ,immune infiltrates ,multiplex ,racial disparities ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
The NanoString GeoMx digital spatial profiling is a new multiplexed platform that quantifies the abundance of tumor‐ and immune‐related proteins in a spatially resolved manner. We performed DSP for the simultaneous assessment of 52 analytes within spatially resolved tissue compartments defined by pan‐cytokeratin expression. We compared protein targets between 94 African American/Black and 65 European American/White cases, tumor and stromal tissue compartments, estrogen receptor alpha (ER)‐positive and ER‐negative cases, and explored potential biomarkers of survival. Of 33 analytes with robust signal for analysis, results were highly replicable. For a subset of markers, correlative analyses between DSP analytes and traditional immunohistochemistry scores revealed moderate to very strong associations between the two platforms. Similarly, DSP analytes and gene expression scores were concordant for 21 of 25 markers with overlap between the two datasets. Several analytes varied by ER status, and across the 25 immune markers surveyed, 14 had a significant inverse association with ER expression. B7 homolog 3 (B7‐H3; encoded by CD276) was the only analyte to show a significant difference by race, being lower in both the tumor and stromal compartments in Black women. DSP markers that were associated with survival included CD8, CD25, CD56, CD127, EpCAM, ER, Ki‐67, and STING. We conclude that DSP is an efficient tool for screening tumor‐ and immune‐related markers in a simultaneous fashion and yields results that are concordant with established immune profiling assays. DSP immune analytes were inversely associated with ER expression, in agreement with a substantial body of previous work that documents higher immune infiltration in ER‐negative breast cancers. This technology revealed that scores of the B7‐H3 protein were significantly lower in breast cancers from Black women compared with White women, an intriguing finding that requires replication in independent and racially diverse female populations.
- Published
- 2022
- Full Text
- View/download PDF
234. Body fatness and breast cancer risk in relation to phosphorylated mTOR expression in a sample of predominately Black women
- Author
-
Ting-Yuan David Cheng, Angela R. Omilian, Song Yao, Weizhou Zhang, Susmita Datta, Wiam Bshara, Rochelle Payne Ondracek, Warren Davis, Song Liu, Chi-Chen Hong, Elisa V. Bandera, Thaer Khoury, and Christine B. Ambrosone
- Subjects
Breast cancer ,Mechanistic target of rapamycin ,African American/Black women ,Body fatness ,Case-control study ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background The mechanistic target of rapamycin (mTOR) pathway promoted by positive energy imbalance and insulin-like growth factors can be a mechanism by which obesity influences breast cancer risk. We evaluated the associations of body fatness with the risk of breast cancer varied with phosphorylated (p)-mTOR protein expression, an indication of the pathway activation. Methods Women with newly diagnosed breast cancer (n = 715; 574 [80%] Black and 141 [20%] White) and non-cancer controls (n = 1983; 1280 [64%] Black and 713 [36%] White) were selected from the Women’s Circle of Health Study. Surgical tumor samples among the cases were immunostained for p-mTOR (Ser2448) and classified as p-mTOR-overexpressed, if the expression level ≥ 75th percentile, or p-mTOR-negative/low otherwise. Anthropometrics were measured by trained staff, and body composition was determined by bioelectrical impedance analysis. Odds ratios (ORs) of p-mTOR-overexpressed tumors and p-mTOR-negative/low tumors compared to controls were estimated using polytomous logistic regression. The differences in the associations by the p-mTOR expression status were assessed by tests for heterogeneity. Results Cases with p-mTOR-overexpressed tumors, but not cases with p-mTOR-negative/low tumors, compared to controls were more likely to have higher body mass index (BMI), percent body fat, and fat mass index (P-heterogeneity
- Published
- 2021
- Full Text
- View/download PDF
235. Identification of a Subset of Stage I Colorectal Cancer Patients With High Recurrence Risk.
- Author
-
Lee, Lik Hang, Davis, Lindy, Ylagan, Lourdes, Omilian, Angela R, Attwood, Kristopher, Firat, Canan, Shia, Jinru, Paty, Philip B, and Cance, William G
- Subjects
- *
IMMUNOHISTOCHEMISTRY , *PROGNOSIS , *COLORECTAL cancer , *TUMOR classification , *PROPORTIONAL hazards models - Abstract
Background: A challenge in early-stage colorectal cancer (CRC) is identifying biomarkers that predict an increased risk for recurrence. A potential clinically adaptable biomarker is focal adhesion kinase (FAK), a tyrosine kinase that promotes invasion and metastasis.Methods: An initial, single-institution, 298-patient cohort with all stages of CRC and long-term follow-up was assessed for FAK with tissue microarrays using immunohistochemistry. FAK expression was scored and dichotomized into high and low. Subsequently, a validation cohort of 517 early-stage CRCs from a separate institution was evaluated. All statistical tests were 2-sided.Results: FAK overexpression did not correlate with any known histologic feature and was an early event in CRC, increasing from normal colon to stage I, and stage I to II, but not different at higher stages. High FAK was associated with decreased 10-year recurrence-free survival (RFS) among stage I patients (70.2% for high FAK vs 94.1% for low, P = .02), but not among higher stages in the initial cohort. The same finding was seen in the validation cohort (73.1% for high FAK vs 93.1% for low, P = .004). Multivariable survival analysis for stage I patients showed only two statistically significant factors predicting RFS: FAK (hazard ratio = 5.27, 95% confidence interval = 1.81 to 15.33, P = .002) and perineural invasion (hazard ratio = 7.38, 95% confidence interval = 1.01 to 53.96, P = .049). FAK was the only statistically significant factor in multivariable analysis across RFS, overall, and disease-specific survivals.Conclusions: High FAK expression identified a subset of stage I CRC patients with high incidence of recurrence and reduced survival, suggesting that FAK has important prognostic value. These patients would immediately benefit from more rigorous surveillance protocols for recurrent disease. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
236. Rates of Recombination in the Ribosomal DNA of Apomictically Propagated Daphnia obtusa Lines.
- Author
-
McTaggart, Seanna J., Dudycha, Jeffry L., Omilian, Angela, and Crease, Teresa J.
- Subjects
- *
DNA , *DAPHNIA , *GENETICS , *RECOMBINANT DNA , *NUCLEIC acids , *GENES - Abstract
Ribosomal (r)DNA undergoes concerted evolution, the mechanisms of which are unequal crossing over and gene conversion. Despite the fundamental importance of these mechanisms to the evolution of rDNA, their rates have been estimated only in a few model species. We estimated recombination rate in rDNA by quantifying the relative frequency of intraindividual length variants in an expansion segment of the 18S rRNA gene of the cladoceran crustacean, Daphnia obtusa, in four apomictically propagated lines. We also used quantitative PCR to estimate rDNA copy number. The apomictic lines were sampled every 5 generations for 90 generations, and we considered each significant change in the frequency distribution of length variants between time intervals to be the result of a recombination event. Using this method, we calculated the recombination rate for this region to be 0.02–0.06 events/generation on the basis of three different estimates of rDNA copy number. In addition, we observed substantial changes in rDNA copy number within and between lines. Estimates of haploid copy number varied from 53 to 233, with a mean of 150. We also measured the relative frequency of length variants in 30 lines at generations 5, 50, and 90. Although length variant frequencies changed significantly within and between lines, the overall average frequency of each length variant did not change significantly between the three generations sampled, suggesting that there is little or no bias in the direction of change due to recombination. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
237. Racial differences in CD8+ T cell infiltration in breast tumors from Black and White women
- Author
-
Yara Abdou, Kristopher Attwood, Ting-Yuan David Cheng, Song Yao, Elisa V. Bandera, Gary R. Zirpoli, Rochelle Payne Ondracek, Leighton Stein, Wiam Bshara, Thaer Khoury, Christine B. Ambrosone, and Angela R. Omilian
- Subjects
CD8+ ,Breast cancer ,Disparities ,Immune infiltrates ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background African American/Black women with breast cancer have poorer survival than White women, and this disparity persists even after adjusting for non-biological factors. Differences in tumor immune biology have been reported between Black and White women, and the tumor immune milieu could potentially drive racial differences in breast cancer etiology and outcome. Methods We examined the association of CD8+ cytotoxic T cells with clinical-pathological variables in the Women’s Circle of Health Study (WCHS) population of predominantly Black breast cancer patients. We evaluated 688 invasive breast tumor samples (550 Black, 138 White) using immunohistochemical staining of tissue microarray slides. CD8+ T cells were scored for each patient tumor sample with digital image analysis. Results Black women had a significantly higher percentage of high-grade, estrogen receptor (ER)-negative, and triple-negative tumors than White women and significantly higher CD8+ T cell density (median 87.6/mm2 vs. 53.1/mm2; p
- Published
- 2020
- Full Text
- View/download PDF
238. Immunohistochemical analysis of adipokine and adipokine receptor expression in the breast tumor microenvironment: associations of lower leptin receptor expression with estrogen receptor-negative status and triple-negative subtype
- Author
-
Adana A. M. Llanos, Yong Lin, Wenjin Chen, Song Yao, Jorden Norin, Marina A. Chekmareva, Coral Omene, Lei Cong, Angela R. Omilian, Thaer Khoury, Chi-Chen Hong, Shridar Ganesan, David J. Foran, Michael Higgins, Christine B. Ambrosone, Elisa V. Bandera, and Kitaw Demissie
- Subjects
Leptin ,Leptin receptor ,Adiponectin ,Adiponectin receptors 1 and 2 ,IHC expression ,Breast cancer clinicopathology ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background The molecular mechanisms underlying the association between increased adiposity and aggressive breast cancer phenotypes remain unclear, but likely involve the adipokines, leptin (LEP) and adiponectin (ADIPOQ), and their receptors (LEPR, ADIPOR1, ADIPOR2). Methods We used immunohistochemistry (IHC) to assess LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 expression in breast tumor tissue microarrays among a sample of 720 women recently diagnosed with breast cancer (540 of whom self-identified as Black). We scored IHC expression quantitatively, using digital pathology analysis. We abstracted data on tumor grade, tumor size, tumor stage, lymph node status, Ki67, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) from pathology records, and used ER, PR, and HER2 expression data to classify breast cancer subtype. We used multivariable mixed effects models to estimate associations of IHC expression with tumor clinicopathology, in the overall sample and separately among Blacks. Results Larger proportions of Black than White women were overweight or obese and had more aggressive tumor features. Older age, Black race, postmenopausal status, and higher body mass index were associated with higher LEPR IHC expression. In multivariable models, lower LEPR IHC expression was associated with ER-negative status and triple-negative subtype (P
- Published
- 2020
- Full Text
- View/download PDF
239. Genetic Variants in COX2 and ALOX Genes and Breast Cancer Risk in White and Black Women
- Author
-
Jennifer M. Mongiovi, Chi-Chen Hong, Gary R. Zirpoli, Thaer Khoury, Angela R. Omilian, Bo Qin, Elisa V. Bandera, Song Yao, Christine B. Ambrosone, and Zhihong Gong
- Subjects
breast cancer ,Black women ,cyclooxygenase 2 ,arachidonate 12-lipoxygenase ,5-LOX ,polymorphism ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
COX and ALOX genes are involved in inflammatory processes and that may be related to breast cancer risk differentially between White and Black women. We evaluated distributions of genetic variants involved in COX2 and ALOX-related pathways and examined their associations with breast cancer risk among 1,275 White and 1,299 Black cases and controls who participated in the Women’s Circle of Health Study. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable-adjusted logistic regression models. Our results showed differential associations of certain genetic variants with breast cancer according to menopausal and ER status in either White or Black women. In White women, an increased risk of breast cancer was observed for COX2-rs689470 (OR: 2.02, P = 0.01) in the dominant model, and was strongest among postmenopausal women (OR: 2.72, P = 0.02) and for estrogen receptor positive (ER+) breast cancers (OR: 2.60, P = 0.001). A reduced risk was observed for ALOX5-rs7099874 (OR: 0.75, P = 0.01) in the dominant model, and was stronger among postmenopausal women (OR: 0.68, P = 0.03) and for ER+ cancer (OR: 0.66, P = 0.001). Four SNPs (rs3840880, rs1126667, rs434473, rs1042357) in the ALOX12 gene were found in high LD (r2 >0.98) in White women and were similarly associated with reduced risk of breast cancer, with a stronger association among postmenopausal women and for ER− cancer. Among Black women, increased risk was observed for ALOX5-rs1369214 (OR: 1.44, P = 0.003) in the recessive model and was stronger among premenopausal women (OR: 1.57, P = 0.03) and for ER+ cancer (OR: 1.53, P = 0.003). Our study suggests that genetic variants of COX2 and ALOX genes are associated with breast cancer, and that these associations and genotype distributions differ in subgroups defined by menopausal and ER status between White and Black women. Findings may provide insights into the etiology of breast cancer and areas for further research into reasons for breast cancer differences between races.
- Published
- 2021
- Full Text
- View/download PDF
240. Breast Tumor Microenvironment in Black Women: A Distinct Signature of CD8+ T-Cell Exhaustion.
- Author
-
Yao, Song, Cheng, Ting-Yuan David, Elkhanany, Ahmed, Yan, Li, Omilian, Angela, Abrams, Scott I, Evans, Sharon, Hong, Chi-Chen, Qi, Qianya, Davis, Warren, Liu, Song, Bandera, Elisa V, Odunsi, Kunle, Takabe, Kazuaki, Khoury, Thaer, and Ambrosone, Christine B
- Subjects
- *
T cells , *HORMONE receptor positive breast cancer , *TUMOR microenvironment , *BREAST tumors , *GENE expression profiling , *BREAST cancer , *CELL physiology , *PROGNOSIS , *LYMPHOCYTES , *RESEARCH funding , *T-cell exhaustion - Abstract
Background: Blacks tend to have a stronger inflammatory immune response than Whites. We hypothesized that racial differences in host immunity also manifest in the tumor microenvironment, constituting part of a distinct aggressive tumor biology underlying higher mortality in Black women.Methods: Pathological and gene expression profiling approaches were used for characterizing infiltrating immune cells in breast tumor microenvironment from 1315 patients from the Women's Circle of Health Study. Racial differences in tumor immune phenotypes were compared, with results validated in a publicly accessible dataset. Prognostic associations of immune phenotypes were assessed in 3 independent cohorts.Results: We found marked and consistent differences in tumor immune responses between Black and White patients. Not only did tumors from Blacks display a stronger overall immune presence but also the composition and quality of immune infiltrates differed, regardless of tumor subtypes. Black patients had a stronger CD4+ and B-cell response, and further, a more exhausted CD8+ T-cell profile. A signature indicating a higher ratio of exhausted CD8+ T cells to total CD8+ T cells (ExCD8-r) was consistently associated with poorer survival, particularly among hormone receptor-positive patients. Among hormone receptor-negative patients, combinations of the absolute fraction of CD8+ T cells and ExCD8-r signature identified the CD8lowExCD8-rhigh subgroup, the most prevalent among Blacks, with the worst survival.Conclusions: Our findings of a distinct exhausted CD8+ T-cell signature in Black breast cancer patients indicate an immunobiological basis for their more aggressive disease and a rationale for the use of immune checkpoint inhibitors targeting the exhaustion phenotype. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
241. Frequency of breast cancer subtypes among African American women in the AMBER consortium
- Author
-
Emma H. Allott, Joseph Geradts, Stephanie M. Cohen, Thaer Khoury, Gary R. Zirpoli, Wiam Bshara, Warren Davis, Angela Omilian, Priya Nair, Rochelle P. Ondracek, Ting-Yuan David Cheng, C. Ryan Miller, Helena Hwang, Leigh B. Thorne, Siobhan O’Connor, Traci N. Bethea, Mary E. Bell, Zhiyuan Hu, Yan Li, Erin L. Kirk, Xuezheng Sun, Edward A. Ruiz-Narvaez, Charles M. Perou, Julie R. Palmer, Andrew F. Olshan, Christine B. Ambrosone, and Melissa A. Troester
- Subjects
African American, Automated digital pathology, Basal-like, Immunohistochemistry, Luminal, PAM50 ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Breast cancer subtype can be classified using standard clinical markers (estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2)), supplemented with additional markers. However, automated biomarker scoring and classification schemes have not been standardized. The aim of this study was to optimize tumor classification using automated methods in order to describe subtype frequency in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium. Methods Using immunohistochemistry (IHC), we quantified the expression of ER, PR, HER2, the proliferation marker Ki67, and two basal-like biomarkers, epidermal growth factor receptor (EGFR) and cytokeratin (CK)5/6, in 1381 invasive breast tumors from African American women. RNA-based (prediction analysis of microarray 50 (PAM50)) subtype, available for 574 (42%) cases, was used to optimize classification. Subtype frequency was calculated, and associations between subtype and tumor characteristics were estimated using logistic regression. Results Relative to ER, PR and HER2 from medical records, central IHC staining and the addition of Ki67 or combined tumor grade improved accuracy for classifying PAM50-based luminal subtypes. Few triple negative cases (
- Published
- 2018
- Full Text
- View/download PDF
242. TAp73 expression and P1 promoter methylation, a potential marker for chemoresponsiveness to cisplatin therapy and survival in muscle-invasive bladder cancer (MIBC).
- Author
-
Bunch, Brittany, Krishnan, Nithya, Greenspan, Rebecca D., Ramakrishnan, Swathi, Attwood, Kristopher, Yan, Li, Qi, Qianya, Wang, Dan, Morrison, Carl, Omilian, Angela, Bshara, Wiam, Pili, Roberto, Trump, Donald L., Johnson, Candace, and Woloszynska, Anna
- Published
- 2019
- Full Text
- View/download PDF
243. Multiplex profiling identifies distinct local and systemic alterations during intraperitoneal chemotherapy for ovarian cancer: An NRG Oncology/Gynecologic Oncology Group Study.
- Author
-
Grabosch, Shannon, Tseng, George, Edwards, Robert P., Lankes, Heather A., Moore, Kathleen, Odunsi, Kunle, Vlad, Anda, Ma, Tianzhou, Strange, Mary, Brozick, Joan, Lugade, Amit, Omilian, Angela, Bshara, Wiam, Stuckey, Ashley R., Walker, Joan L., and Birrer, Michael
- Subjects
- *
OVARIAN cancer treatment , *HYPERTHERMIC intraperitoneal chemotherapy , *GYNECOLOGY , *CLINICAL trials , *MICRORNA , *BIOMARKERS - Abstract
Objectives Ovarian cancer leads to abdominal carcinomatosis and late stage (III/IV) diagnosis in 75% of patients. Three randomized phase III trials have demonstrated that intraperitoneal (IP) chemotherapy improves outcomes in epithelial ovarian cancer. While IP treatment is validated by clinical trials, there is a poor understanding of the mechanism(s) leading to the survival advantage other than the increased concentration of cytotoxic drugs within the tumor microenvironment. A better understanding of this process through analysis of dynamic biomarkers should promote novel approaches that may enhance tumor clearance. We propose this pilot study to confirm the feasibility of collecting serial peritoneal samples from implanted catheters in women receiving IP chemotherapy. We believe these specimens may be used for multiplex analysis to reveal unique biomarker fluctuations when compared to peripheral blood. Methods From 13 women participating on GOG 252, 30 whole blood, 12 peritoneal fluid (PF), and 20 peritoneal wash (PW) with 30 mL saline were obtained. Samples were requested prior to the first three chemotherapy cycles. Samples were assessed for volume, cell populations, protein, RNA, and miRNA content changes. Results Median volume for PF was 1.6 mL and 3.1 mL for PW. PW is a dilution of PF capable of capturing measurable biomarkers. Peritoneal aspirates contain a unique profile of biomarkers distinct from blood. miRNA undergo earlier alteration with chemotherapy than genes. Flow cytometry does not adequately capture biomarker fluctuations. Conclusions As a proof of principle study, this trial provides evidence that sampling the peritoneal cavity can be adapted for biomarker analysis. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
244. Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach.
- Author
-
Rivera, Ajna S., Pankey, M. Sabrina, Plachetzki, David C., Villacorta, Carlos, Syme, Anna E., Serb, Jeanne M., Omilian, Angela R., and Oakley, Todd H.
- Subjects
- *
GENOMICS , *HYPOTHESIS , *GENOMES , *DAPHNIA , *CRUSTACEA - Abstract
Background: Duplication and divergence of genes and genetic networks is hypothesized to be a major driver of the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in the context of eye evolution by using new approaches to understand patterns of gene duplication during the evolution of metazoan genomes. We hypothesize that 1) genes involved in eye development and phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct types of optical design; and 2) genes with functional relationships were duplicated and lost together, thereby preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and loss evident in 19 metazoan genomes, including that of Daphnia pulex - the first completely sequenced crustacean genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans) have more optical designs than any other major clade of animals, allowing us to test specifically whether the high amount of disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes. Results: Using protein predictions from 19 metazoan whole-genome projects, we found all members of 23 gene families known to be involved in eye development or phototransduction and deduced their phylogenetic relationships. This allowed us to estimate the number and timing of gene duplication and loss events in these gene families during animal evolution. When comparing duplication/retention rates of these genes, we found that the rate was significantly higher in pancrustaceans than in either vertebrates or non-pancrustacean protostomes. Comparing patterns of co-duplication across Metazoa showed that while these eye-genes co-duplicate at a significantly higher rate than those within a randomly shuffled matrix, many genes with known functional relationships in model organisms did not co-duplicate more often than expected by chance. Conclusions: Overall, and when accounting for factors such as differential rates of whole-genome duplication in different groups, our results are broadly consistent with the hypothesis that genes involved in eye development and phototransduction duplicate at a higher rate in Pancrustacea, the group with the greatest variety of optical designs. The result that these genes have a significantly high number of co-duplications and co-losses could be influenced by shared functions or other unstudied factors such as synteny. Since we did not observe coduplication/ co-loss of genes for all known functional modules (e.g. specific regulatory networks), the interactions among suites of known co-functioning genes (modules) may be plastic at the temporal scale of analysis performed here. Other factors in addition to gene duplication - such as cis-regulation, heterotopy, and co-option - are also likely to be strong factors in the diversification of eye types. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
245. P-0046CURAXIN CBL0137 DEMONSTRATES SIGNIFICANT ANTITUMOR ACTIVITY AGAINST FACT-POSITIVE PATIENT-DERIVED PANCREATIC DUCTAL ADENOCARCINOMA.
- Author
-
Burkhart, Catherine, Paszkiewicz, Geraldine, Gawron, Loretta, Kohrn, Rachael, Purmal, Andrei, Repasky, Elizabeth, Morrison, Carl, Omilian, Angela, Gudkov, Andrei, and Gurova, Katerina
- Subjects
- *
PANCREATIC cancer treatment , *ANTINEOPLASTIC agents , *DRUG activation , *PANCREATIC duct , *CANCER cell differentiation , *CELL death , *GENETIC transcription - Published
- 2013
- Full Text
- View/download PDF
246. Tumor-associated mononuclear cells in the tumor bed of triple-negative breast cancer associate with clinical outcomes in the post-neoadjuvant chemotherapy setting.
- Author
-
Khoury T, Aljabab S, Yao S, Ambrosone C, Omilian A, Attwood K, Ji W, and Gandhi S
- Subjects
- Antineoplastic Combined Chemotherapy Protocols therapeutic use, Female, Humans, Lymphocytes, Tumor-Infiltrating, Neoadjuvant Therapy, Prognosis, Proportional Hazards Models, Breast Neoplasms pathology, Triple Negative Breast Neoplasms drug therapy
- Abstract
Purpose: To evaluate the clinical role of tumor-associated macrophages, including foamy (FM) and hemosiderin-laden macrophages (HLM) in the tumor bed (TB) of triple-negative breast cancer (TNBC) post-neoadjuvant chemotherapy (NACT)., Methods: We conducted a pathologic review of 129 women, diagnosed with TNBC between 2002 and 2016 at our institute. The residual cancer burden (RCB) was calculated. We estimated the percentage of tumor-infiltrating lymphocytes (TILs) in the core needle biopsy (CNB), and FM, HLM, and TILs (in TB) [the combined cells are designated as tumor-associated mononuclear cells (TAMNC)]. The information on patient demographics, chemotherapy regimen, recurrence-free survival (RFS), and overall survival (OS) was extracted from the medical records., Results: Pathologic complete response (pCR) was achieved in 34.1% of the women. TILs (10% increment in CNB) only were associated with pCR in the multivariable analysis [odds ratio 1.04 (1.02, 1.06) (p = 0.0003)]. Immune cells associated with better OS included TAMNC (≤ 30%) [hazard ratio (HR) 4.32 (1.93, 9.66) (p = 0.0004)], and FM (0%) [HR 2.30 (1.06, 4.98) (p = 0.036)]. While increased HLM (10% increment) was statistically significant with HR 0.93 and 95% CI (0.88 to 0.98) (p = 0.0061), using a cutoff of 0%, HLM (0%: negative vs. ≥ 1%: positive) achieved only borderline significance with HR 2.05 (0.98, 4.31) (p = 0.058). Similarly, these immune cells were also associated with better RFS: TAMNC (≤ 30%) [HR 4.57 (2.04, 10.21) (p = 0.0002)], FM (0%) [HR 2.80 (1.23, 6.35) (p = 0.014)], and HLM (0%) [HR 2.34 (1.07, 5.11) (p = 0.03)]. TILs (in TB) were not associated with any clinical outcomes., Conclusions: Although TILs may play a role in the response to NACT, they may not be critical to the prognosis after NACT. Instead, FM and HLM may assume this role. More studies are warranted., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
247. FOXA1 hypermethylation: link between parity and ER-negative breast cancer in African American women?
- Author
-
Espinal AC, Buas MF, Wang D, Cheng DT, Sucheston-Campbell L, Hu Q, Yan L, Payne-Ondracek R, Cortes E, Tang L, Gong Z, Zirpoli G, Khoury T, Yao S, Omilian A, Demissie K, Bandera EV, Liu S, Ambrosone CB, and Higgins MJ
- Subjects
- Breast Feeding, Breast Neoplasms genetics, Breast Neoplasms metabolism, Down-Regulation, Female, Genetic Association Studies, High-Throughput Nucleotide Sequencing, Humans, Linear Models, Receptors, Estrogen metabolism, Sequence Analysis, DNA, Sequence Analysis, RNA, White People genetics, Black or African American genetics, Breast Neoplasms ethnology, DNA Methylation, Hepatocyte Nuclear Factor 3-alpha genetics, Hepatocyte Nuclear Factor 3-alpha metabolism, Parity genetics
- Abstract
Background: Reproductive factors, particularly parity, have differential effects on breast cancer risk according to estrogen receptor (ER) status, especially among African American (AA) women. One mechanism could be through DNA methylation, leading to altered expression levels of genes important in cell fate decisions., Methods: Using the Illumina 450K BeadChip, we compared DNA methylation levels in paraffin-archived tumor samples from 383 AA and 350 European American (EA) women in the Women's Circle of Health Study (WCHS). We combined 450K profiles with RNA-seq data and prioritized genes based on differential methylation by race, correlation between methylation and gene expression, and biological function. We measured tumor protein expression and assessed its relationship to DNA methylation. We evaluated associations between reproductive characteristics and DNA methylation using linear regression., Results: 410 loci were differentially methylated by race, with the majority unique to ER- tumors. FOXA1 was hypermethylated in tumors from AA versus EA women with ER- cancer, and increased DNA methylation correlated with reduced RNA and protein expression. Importantly, parity was positively associated with FOXA1 methylation among AA women with ER- tumors (P = 0.022), as was number of births (P = 0.026), particularly among those who did not breastfeed (P = 0.008). These same relationships were not observed among EA women, although statistical power was more limited., Conclusions: Methylation and expression of FOXA1 is likely impacted by parity and breastfeeding. Because FOXA1 regulates a luminal gene expression signature in progenitor cells and represses the basal phenotype, this could be a mechanism that links these reproductive exposures with ER- breast cancer.
- Published
- 2017
- Full Text
- View/download PDF
248. Impact of devascularization and tissue procurement on cell number and RNA integrity in prostatectomy tissue.
- Author
-
Payne Ondracek R, Cheng J, Gangavarapu KJ, Azabdaftari G, Woltz J, Brese E, Omilian A, Bshara W, Huss WJ, Mohler JL, and Marshall JR
- Subjects
- Cell Count, Humans, Laparoscopy, Male, Prostate blood supply, Prostate pathology, Prostatic Neoplasms blood supply, Prostatic Neoplasms pathology, Prostate surgery, Prostatectomy methods, Prostatic Neoplasms surgery, RNA, Specimen Handling methods, Tissue and Organ Procurement methods
- Abstract
Background: Minimizing the time between tissue devascularization in robot-assisted laparoscopic radical prostatectomy (RALP) and tissue procurement should produce the highest quality tissue for research study. This study examines the relationship between intra-operative time and two indicators of tissue integrity: number of epithelial cells per gram of tissue and RNA integrity numbers (RINs). The study also compares the RIN values of tissue obtained intra-operatively by biopsy, before and after devascularization, to those from RALP specimen tissue, obtained through the routine research tissue procurement process., Methods: Prostate tissues from two series of patients were analyzed. In the first, tissue from 18 patients undergoing RALP was analyzed for number of epithelial cells per gram of tissue. In the second, RIN values of tissue from 46 patients involved in a clinical study were analyzed. RIN values were assessed from RALP specimen tissue as well as tissue removed intra-operatively by biopsy, before and after devascularization., Results: Time from RALP to tissue procurement was not significantly associated with number of epithelial cells per gram of tissue or with RIN values. RINs of biopsy tissue obtained intra-operatively before and after devascularization were similar. However, the RIN values of tissue from RALP specimens were significantly higher than those of biopsy tissue obtained either before or after devascularization., Conclusions: Tissue quality, defined by number of epithelial cells or RIN values, was not affected by time between devascularization and procurement. Obtaining tissue from intra-operative biopsies, either before or after devascularization, is not necessary and actually produced lower RINs than found in tissue from RALP specimens, obtained through the routine research tissue procurement process., (© 2015 Wiley Periodicals, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
249. PP2A-B56α controls oncogene-induced senescence in normal and tumor human melanocytic cells.
- Author
-
Mannava S, Omilian AR, Wawrzyniak JA, Fink EE, Zhuang D, Miecznikowski JC, Marshall JR, Soengas MS, Sears RC, Morrison CD, and Nikiforov MA
- Subjects
- Cell Line, Tumor, Cellular Senescence, Humans, Melanocytes metabolism, Melanoma secondary, Protein Stability, Up-Regulation, Genes, myc, Melanoma genetics, Protein Phosphatase 2 metabolism
- Abstract
Oncoprotein C-MYC is overexpressed in human metastatic melanomas and melanoma-derived cells where it is required for the suppression of oncogene-induced senescence (OIS). The genetic events that maintain high levels of C-MYC in melanoma cells and their role in OIS are unknown. Here we report that C-MYC in cells from several randomly chosen melanoma lines was upregulated at the protein level, and largely because of the increased protein stability. Of all known regulators of C-MYC stability, levels of B56α subunit of the PP2A tumor suppressor complex were substantially suppressed in all human melanoma cells compared with normal melanocytes. Accordingly, immunohistochemical analysis revealed that the lowest and the highest amounts of PP2A-B56α were predominantly detected in metastatic melanoma tissues and in primary melanomas from patients with good clinical outcome, respectively. Importantly, PP2A-B56α overexpression suppressed C-MYC in melanoma cells and induced OIS, whereas depletion of PP2A-B56α in normal human melanocytes upregulated C-MYC protein levels and suppressed BRAF(V600E)- and, less efficiently, NRAS(Q61R)-induced senescence. Our data reveal a mechanism of C-MYC overexpression in melanoma cells and identify a functional role for PP2A-B56α in OIS of melanocytic cells.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.