251. ALMA spectral survey of Supernova 1987A --- molecular inventory, chemistry, dynamics and explosive nucleosynthesis
- Author
-
Matsuura, M., Indebetouw, R., Woosley, S., Bujarrabal, V., Abellan, F. J., McCray, R., Kamenetzky, J., Fransson, C., Barlow, M. J., Gomez, H. L., Cigan, P., De Looze, I, Spyromilio, J., Staveley-Smith, L., Zanardo, G., Roche, P., Larsson, J., Viti, S., van Loon, J. Th., Wheeler, J. C., Baes, M., Chevalier, R., Lundqvist, P., Marcaide, J. M., Dwek, E., Meixner, M., Ng, C. -Y., Sonneborn, G., Yates, J., Matsuura, M., Indebetouw, R., Woosley, S., Bujarrabal, V., Abellan, F. J., McCray, R., Kamenetzky, J., Fransson, C., Barlow, M. J., Gomez, H. L., Cigan, P., De Looze, I, Spyromilio, J., Staveley-Smith, L., Zanardo, G., Roche, P., Larsson, J., Viti, S., van Loon, J. Th., Wheeler, J. C., Baes, M., Chevalier, R., Lundqvist, P., Marcaide, J. M., Dwek, E., Meixner, M., Ng, C. -Y., Sonneborn, G., and Yates, J.
- Abstract
We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the ALMA 210--300 and 340--360 GHz spectra, we detected cold (20--170 K) CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J=6--5 and 5--4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities cause mixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of 28SiO/29SiO>13, 28SiO/30SiO>14, and 12CO/13CO>21, with the most likely limits of 28SiO/29SiO>128, 28SiO/30SiO>189. Low 29Si and 30Si abundances in SN 1987A are consistent with nucleosynthesis models that show inefficient formation of neutron-rich isotopes in a low metallicity environment, such as the Large Magellanic Cloud. The deduced large mass of HCO+ (~5x10^-6 Msun) and small SiS mass (<6x10^-5 Msun) might be explained by some mixing of elements immediately after the explosion. The mixing might have caused some hydrogen from the envelope to sink into carbon and oxygen-rich zones after the explosion, enabling the formation of a substantial mass of HCO+. Oxygen atoms may have penetrated into silicon and sulphur zones, suppressing formation of SiS. Our ALMA observations open up a new window to investigate chemistry, dynamics and explosive-nucleosynthesis in supernovae., Comment: Accepted by MNRAS, 16 pages
- Published
- 2017
- Full Text
- View/download PDF