251. Performance and mechanisms of alkaline solid waste in CO 2 mineralization and utilization.
- Author
-
Zhang Y, Zhan G, Huang Z, Xing L, Ying Y, Chen Z, and Li J
- Subjects
- Calcium Carbonate chemistry, Industrial Waste analysis, Minerals chemistry, Steel chemistry, Amines, Carbon Dioxide chemistry, Solid Waste
- Abstract
CO
2 mineral sequestration using alkaline solid waste (ASW) is a promising strategy for synergistically reducing CO2 emissions and reusing industrial waste. However, improvement the carbonation degree still remains challenges due to the sluggish leaching rate of Ca/Mg ion at low pH. To the issues, this study proposed an amine-mediated CO2 absorption and mineralization process with six common ASWs, as well an ecological utilization route of CO2 -ASW productions. Experimental results indicated that calcium carbide slag (CS) had greater CO2 mineralization capacity (86.2 g-CO2 /kg-CS) than other ASWs, while stirring rate and particle size played a more important role during CO2 capture. Amine-mediated CO2 capture was verified to be more excellent with steel slag (SS) as mineral medium. When the MEA concentration was increased to 2 mol/L, the extraction efficiency of Ca2+ was increased by 35 %, leaded to the CO2 removal efficiency significantly promoted from 49 % to 92 %. The characterization of structural morphology referred spherical aragonite or needle-bar calcite was dominant for the porous mineralization products (30.6 m2 /g). High germination index of pea seed (112.1 % at a dose of 10 g/L) inferred the negligible toxicological effects of tiny MEA residue over SS mineralization products, after centrifugally washing treatment. Pea seeds cultivated with mineralized products after centrifugal washing can achieve a growth rate of about 4 mm/d. Overall, this work provides a feasible route to apply the porous CO2 -ASWs production into water conservation in arid and sandy land., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF