467 results on '"MacGowan, B. J."'
Search Results
252. Green light 2ω as an x‐ray streak camera fiducial
- Author
-
Nilson, D. G., primary and MacGowan, B. J., additional
- Published
- 1986
- Full Text
- View/download PDF
253. The National Ignition Campaign on NIF.
- Author
-
MacGowan, B. J.
- Published
- 2010
254. Energies of nickel-like 4d to 4p laser lines.
- Author
-
Scofield, J. H. and MacGowan, B. J.
- Published
- 1992
- Full Text
- View/download PDF
255. The evolution of two-dimensional effects in fast-electron transport from high-intensity laser-plasma interactions.
- Author
-
Amiranoff, F., Eidmann, K., Sigel, R., Fedosejevs, R., Maaswinkel, A., Teng, Yung-lu, Kilkenny, J. D., Hares, J. D., Bradley, D. K., MacGowan, B. J., and Goldsack, T. J.
- Published
- 1982
- Full Text
- View/download PDF
256. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments.
- Author
-
Moody, J. D., Robey, H. F., Celliers, P. M., Munro, D. H., Barker, D. A., Baker, K. L., Döppner, T., Hash, N. L., Hopkins, L. Berzak, LaFortune, K., Landen, O. L., LePape, S., MacGowan, B. J., Ralph, J. E., Ross, J. S., Widmayer, C., Nikroo, A., Giraldez, E., and Boehly, T.
- Subjects
- *
SYMMETRY (Physics) , *PHYSICS experiments , *ORTHOGONAL functions , *LASER beams , *ALUMINUM - Abstract
An innovative technique has been developed and used to measure the shock propagation speed along two orthogonal axes in an inertial confinement fusion indirect drive implosion target. This development builds on an existing target and diagnostic platform for measuring the shock propagation along a single axis. A 0.4 mm square aluminum mirror is installed in the ablator capsule which adds a second orthogonal view of the x-ray-driven shock speeds. The new technique adds capability for symmetry control along two directions of the shocks launched in the ablator by the laser-generated hohlraum x-ray flux. Laser power adjustments in four different azimuthal cones based on the results of this measurement can reduce time-dependent symmetry swings during the implosion. Analysis of a large data set provides experimental sensitivities of the shock parameters to the overall laser delivery and in some cases shows the effects of laser asymmetries on the pole and equator shock measurements. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
257. Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas.
- Author
-
Moody, J. D., Strozzi, D. J., Divol, L., Michel, P., Robey, H. F., LePape, S., Ralph, J., Ross, J. S., Glenzer, S. H., Kirkwood, R. K., Landen, O. L., MacGowan, B. J., Nikroo, A., and Williams, E. A.
- Subjects
- *
BACKSCATTERING , *LASER plasmas , *REMOTE sensing , *BRILLOUIN scattering , *WAVELENGTHS , *COUPLING reactions (Chemistry) - Abstract
Stimulated Raman backscatter is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching stimulated Raman backscatter between a shot reducing outer versus a shot reducing inner power we infer that about half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. This is the first instantaneous nondisruptive measure of power transfer in an indirect drive NIF experiment using optical measurements. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
258. Assembly of High-Areal-Density Deuterium-Tritium Fuel from Indirectly Driven Cryogenic Implosions.
- Author
-
Mackinnon, A. J., Kline, J. L., Dixit, S. N., Glenzer, S. H., Edwards, M. J., Callahan, D. A., Meezan, N. B., Haan, S. W., Kilkenny, J. D., Döppner, T., Farley, D. R., Moody, J. D., Ralph, J. E., MacGowan, B. J., Landen, O. L., Robey, H. F., Boehly, T. R., Celliers, P. M., Eggert, J. H., and Krauter, K.
- Subjects
- *
TRITIUM , *CRYOGENIC liquids , *LASER beams , *NEUTRONS , *PARAMETER estimation , *TOTAL energy systems (On-site electric power production) , *TEMPERATURE measurements - Abstract
The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ∼1.0 ± 0 .1 gem-2, which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 &mgr;m. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm-3. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
259. Capsule implosion optimization during the indirect-drive National Ignition Campaign.
- Author
-
Landen, O. L., Edwards, J., Haan, S. W., Robey, H. F., Milovich, J., Spears, B. K., Weber, S. V., Clark, D. S., Lindl, J. D., MacGowan, B. J., Moses, E. I., Atherton, J., Amendt, P. A., Boehly, T. R., Bradley, D. K., Braun, D. G., Callahan, D. A., Celliers, P. M., Collins, G. W., and Dewald, E. L.
- Subjects
- *
MATHEMATICAL optimization , *COMBUSTION , *SENSITIVITY analysis , *HYDRODYNAMICS , *NUCLEAR facilities , *CALIBRATION , *ITERATIVE methods (Mathematics) - Abstract
Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
260. Backscatter measurements for NIF ignition targets (invited).
- Author
-
Moody, J. D., Datte, P., Krauter, K., Bond, E., Michel, P. A., Glenzer, S. H., Divol, L., Niemann, C., Suter, L., Meezan, N., MacGowan, B. J., Hibbard, R., London, R., Kilkenny, J., Wallace, R., Kline, J. L., Knittel, K., Frieders, G., Golick, B., and Ross, G.
- Subjects
- *
BACKSCATTERING , *LASER plasmas , *BRILLOUIN scattering , *RAMAN effect , *NUCLEAR fusion , *PLASMA diagnostics - Abstract
Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
261. Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility.
- Author
-
Michel, P., Glenzer, S. H., Divol, L., Bradley, D. K., Callahan, D., Dixit, S., Glenn, S., Hinkel, D., Kirkwood, R. K., Kline, J. L., Kruer, W. L., Kyrala, G. A., Le Pape, S., Meezan, N. B., Town, R., Widmann, K., Williams, E. A., MacGowan, B. J., Lindl, J., and Suter, L. J.
- Subjects
- *
ENERGY transfer , *LASERS , *PLASMA gases , *LASER beams , *BACKSCATTERING - Abstract
The Hohlraum energetics experimental campaign started in the summer of 2009 on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. These experiments showed good coupling of the laser energy into the targets [N. Meezan et al., Phys. Plasmas 17, 056304 (2010)]. They have also demonstrated controlled crossed-beam energy transfer between laser beams as an efficient and robust tool to tune the implosion symmetry of ignition capsules, as predicted by earlier calculations [P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009)]. A new linear model calculating crossed-beam energy transfer between cones of beams on the NIF has been developed. The model has been applied to the subscale Hohlraum targets shot during the National Ignition Campaign in 2009. A good agreement can be found between the calculations and the experiments when the impaired propagation of the laser beams due to backscatter is accounted for. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
262. Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled Hohlraums.
- Author
-
Regan, S. P., Meezan, N. B., Suter, L. J., Strozzi, D. J., Kruer, W. L., Meeker, D., Glenzer, S. H., Seka, W., Stoeckl, C., Glebov, V. Yu., Sangster, T. C., Meyerhofer, D. D., McCrory, R. L., Williams, E. A., Jones, O. S., Callahan, D. A., Rosen, M. D., Landen, O. L., Sorce, C., and MacGowan, B. J.
- Subjects
- *
PARTICLES (Nuclear physics) , *ELECTRONS , *LASERS , *HOT carriers , *SEMICONDUCTORS - Abstract
For the first time a burst of suprathermal electrons is observed from the exploding laser-entrance-hole window of gas-filled Hohlraums driven with 13.5 kJ of 351 nm laser light. The two-plasmon-decay instability appears to produce up to 20 J of hot electrons with Thot∼75 keV at early times and has a sharp laser-intensity threshold between 0.3 and 0.5×1015 W/cm2. The observed threshold can be exploited to mitigate preheat by window hot electrons in ignition Hohlraums for the National Ignition Facility and achieve high-density, high-pressure conditions in indirect drive implosions. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
263. Energy transfer between laser beams crossing in ignition hohlraums.
- Author
-
Michel, P., Divol, L., Williams, E. A., Thomas, C. A., Callahan, D. A., Weber, S., Haan, S. W., Salmonson, J. D., Meezan, N. B., Landen, O. L., Dixit, S., Hinkel, D. E., Edwards, M. J., MacGowan, B. J., Lindl, J. D., Glenzer, S. H., and Suter, L. J.
- Subjects
- *
ENERGY transfer , *LASER beams , *PLASMA gases , *PLASMA waves , *RESONANCE ionization spectroscopy ,SPARK ignition engine ignition - Abstract
The full scale modeling of power transfer between laser beams crossing in plasmas is presented. A new model was developed, allowing calculations of the propagation and coupling of pairs of laser beams with their associated plasma wave in three dimensions. The complete set of laser beam smoothing techniques used in ignition experiments is modeled and their effects on crossed-beam energy transfer are investigated. A shift in wavelength between the beams can move the instability in or out of resonance and hence allows tuning of the energy transfer. The effects of energy transfer on the effective beam pointing and on symmetry have been investigated. Several ignition designs have been analyzed and compared, indicating that a wavelength shift of up to 2 Å between cones of beams should be sufficient to control energy transfer in ignition experiments. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
264. Energetics of multiple-ion species hohlraum plasmas.
- Author
-
Neumayer, P., Berger, R. L., Callahan, D., Divol, L., Froula, D. H., London, R. A., MacGowan, B. J., Meezan, N. B., Michel, P. A., Ross, J. S., Sorce, C., Widmann, K., Suter, L. J., and Glenzer, S. H.
- Subjects
- *
PLASMA gases , *PARTICLES (Nuclear physics) , *LASER beams , *ELECTRON distribution , *SCATTERING (Physics) - Abstract
A study of the laser-plasma interaction processes has been performed in multiple-ion species hohlraum plasmas at conditions similar to those expected in indirect drive inertial confinement fusion targets. Gas-filled hohlraums with electron densities of 5.5×1020 and 9×1020 cm-3 are heated by 14.3 kJ of laser energy (wavelength 351 nm) to electron temperatures of 3 keV and backscattered laser light is measured. Landau damping of the ion acoustic waves is increased by adding hydrogen to a CO2 or CF4 gas. Stimulated Brillouin backscattering of a 351 nm probe beam is found to decrease monotonically with increasing Landau damping, accompanied by a comparable increase in the transmission. More efficient energy coupling into the hohlraum by suppression of backscatter from the heater beams results in an increased hohlraum radiation temperature, showing that multiple-ion species plasmas improve the overall hohlraum energetics. The reduction in backscatter is reproduced by linear gain calculations as well as detailed full-scale three-dimensional laser-plasma interaction simulations, demonstrating that Landau damping is the controlling damping mechanism in inertial confinement fusion relevant high-electron temperature plasmas. These findings have led to the inclusion of multiple-ion species plasmas in the hohlraum point design for upcoming ignition campaigns at the National Ignition Facility. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
265. The national ignition facility: path to ignition in the laboratory.
- Author
-
Moses, E. I., Bonanno, R. E., Haynam, C. A., Kauffman, R. L., MacGowan, B. J., Patterson, R. W., Sawicki, R. H., and Van Wonterghem, B. M.
- Subjects
- *
INDUSTRIAL lasers , *LASER fusion , *NUCLEAR weapons , *LASER beams , *INERTIAL confinement fusion - Abstract
The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
266. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas.
- Author
-
Glenzer, S. H., Froula, D. H., Divol, L., Dorr, M., Berger, R. L., Dixit, S., Hammel, B. A., Haynam, C., Hittinger, J. A., Holder, J. P., Jones, O. S., Kalantar, D. H., Landen, O. L., Langdon, A. B., Langer, S., MacGowan, B. J., Mackinnon, A. J., Meezan, N., Moses, E. I., and Niemann, C.
- Subjects
- *
LASER beams , *LASER plasmas , *LASER-plasma interactions , *COMPUTER simulation , *QUANTUM theory , *PHYSICS - Abstract
With the next generation of high-power laser facilities for inertial fusion coming online, ensuring laser beam propagation through centimetre-scale plasmas is a key physics issue for reaching ignition. Existing experimental results including the most recent one are limited to small laser spots, low-interaction laser beam energies and small plasma volumes of 1–2 mm. Here, we demonstrate the propagation of an intense, high-energy, ignition-size laser beam through fusion-size plasmas on the National Ignition Facility (NIF) and find the experimental measurements to agree with full-scale modelling. Previous attempts to apply computer modelling as a predictive capability have been limited by the inherently multiscale description of the full laser–plasma interaction processes. The findings of this study validate supercomputer modelling as an essential tool for the design of future ignition experiments. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
267. Development of nuclear diagnostics for the National Ignition Facility (invited).
- Author
-
Glebov, V. Yu., Meyerhofer, D. D., Sangster, T. C., Stoeckl, C., Roberts, S., Barrera, C. A., Celeste, J. R., Cerjan, C. J., Dauffy, L. S., Eder, D. C., Griffith, R. L., Haan, S. W., Hammel, B. A., Hatchett, S. P., Izumi, N., Kimbrough, J. R., Koch, J. A., Landen, O. L., Lerche, R. A., and MacGowan, B. J.
- Subjects
- *
IMAGING systems , *PARTICLES (Nuclear physics) , *OPTICS , *IMAGE analysis , *NEUTRONS - Abstract
The National Ignition Facility (NIF) will provide up to 1.8 MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 1019 DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
268. Qualification of a near backscattering imaging system on the National Ignition Facility.
- Author
-
Mackinnon, A. J., Niemann, C., Piston, K., Holtmeier, G., McCarville, T., Jones, G., Reinbachs, I., Costa, R., Celeste, J., Griffith, R., Kirkwood, R. K., MacGowan, B. J., and Glenzer, S. H.
- Subjects
- *
DIAGNOSTIC imaging , *IMAGING systems , *OPTOELECTRONIC devices , *BACKSCATTERING , *OPTICS , *SCATTERING (Physics) - Abstract
A near backscattering imaging diagnostic system has been implemented, qualified, and fielded on the first quad of beams on the National Ignition Facility [E. M. Campbell and W. J. Hogan, Plasma Phys. Controlled Fusion 41, B39 (1999)]. This diagnostic image diffusing scatter plates, placed around the final focus lenses on the NIF target chamber, to quantitatively measure the fraction of light backscattered outside of the incident cone of the focusing optics. The imaging system consists of a wide-angle lens coupled to a gated charged coupled device camera, providing 3 mm resolution over a 2 m field of view. To account for changes of the system throughput due to exposure to target debris the system was routinely calibrated in situ at 532 and 355 nm using a dedicated pulsed laser source. The diagnostic and calibration methods will be described together with recent results from the NIF early light shots. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
269. Hard x-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility.
- Author
-
McDonald, J. W., Suter, L. J., Landen, O. L., Foster, J. M., Celeste, J. R., Holder, J. P., Dewald, E. L., Schneider, M. B., Hinkel, D. E., Kauffman, R. L., Atherton, L. J., Bonanno, R. E., Dixit, S. N., Eder, D. C., Haynam, C. A., Kalantar, D. H., Koniges, A. E., Lee, F. D., MacGowan, B. J., and Manes, K. R.
- Subjects
- *
X-ray spectroscopy , *LASER beam scattering , *WAVELENGTHS , *HOT carriers , *SPECTRUM analysis , *LASER research - Abstract
Time resolved hard x-ray images (hv>9 keV) and time integrated hard x-ray spectra (hv=18–150 keV) from vacuum hohlraums irradiated with four 351 nm wavelength National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] laser beams are presented as a function of hohlraum size, laser power, and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (Fhot) shows a correlation with laser intensity and with an empirical hohlraum plasma filling model. In addition, the significance of Au K-alpha emission and Au K-shell reabsorption observed in some of the bremsstrahlung dominated spectra is discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
270. Three-dimensional hydrodynamic experiments on the National Ignition Facility.
- Author
-
Blue, B. E., Robey, H. F., Glendinning, S. G., Bono, M. J., Burkhart, S. C., Celeste, J. R., Coker, R. F., Costa, R. L., Dixit, S. N., Foster, J. M., Hansen, J. F., Haynam, C. A., Hermann, M. R., Holder, J. P., Hsing, W. W., Kalantar, D. H., Lanier, N. E., Latray, D. A., Louis, H., and MacGowan, B. J.
- Subjects
- *
HYDRODYNAMICS , *FLUID dynamics , *SUPERSONIC planes , *SHOCK waves , *MECHANICAL shock , *ASTROPHYSICS - Abstract
The production of supersonic jets of material via the interaction of a strong shock wave with a spatially localized density perturbation is a common feature of inertial confinement fusion and astrophysics. The behavior of two-dimensional (2D) supersonic jets has previously been investigated in detail [J. M. Foster, B. H. Wilde, P. A. Rosen, T. S. Perry, M. Fell, M. J. Edwards, B. F. Lasinski, R. E. Turner, and M. L. Gittings, Phys. Plasmas 9, 2251 (2002)]. In three dimensions (3D), however, there are new aspects to the behavior of supersonic jets in compressible media. In this paper, the commissioning activities on the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. Sorem, Laser Focus World 30, 75 (1994)] to enable hydrodynamic experiments will be presented as well as the results from the first series of hydrodynamic experiments. In these experiments, two of the first four beams of NIF are used to drive a 40 Mbar shock wave into millimeter scale aluminum targets backed by 100 mg/cc carbon aerogel foam. The remaining beams are delayed in time and are used to provide a point-projection x-ray backlighter source for diagnosing the three-dimensional structure of the jet evolution resulting from a variety of 2D and 3D features. Comparisons between data and simulations using several codes will be presented. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
271. First measurement of backscatter dependence on ion acoustic damping in a high density helium/hydrogen laser-plasma.
- Author
-
Moody, J. D., Williams, E. A., Lours, L., Sanchez, J. J., Berger, R. L., Collins, G. A., Decker, C. B., Divol, L., Glenzer, S. H., Hammel, B. A., Jones, R., Kirkwood, R. K., Kruer, W. L., Macgowan, B. J., Pipes, J., Suter, L. J., Thoe, R., Unites, W., and Young, P. E.
- Subjects
- *
BACKSCATTERING , *ION acoustic waves , *DAMPING (Mechanics) , *RAMAN effect , *BRILLOUIN scattering , *SCATTERING (Physics) - Abstract
The dependence of stimulated backward and forward scattered light on ion acoustic damping (vi) is measured for the first time in a long scale length He/H2 composition plasma at a density of 0.08 critical for 351-nm laser light Both the stimulated Raman and Brillouin backscattering decrease with increasing ion acoustic damping. Modeling of the backward scattering agrees with the measurements when the Langmuir and ion acoustic fluctuations saturate at δn/n = 0.01 and 0.001, respectively. These low saturation levels cannot be explained using standard nonlinear wave decay saturation mechanisms and may indicate that other saturation mechanisms are active in this plasma. Modeling of the forward scattering agrees qualitatively with the measurements and provides an estimate of the density fluctuations in the plasma. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
272. Scaling of saturated stimulated Raman scattering with temperature and intensity in ignition scale plasmas.
- Author
-
Kirkwood, R. K., Berger, R. L., Geddes, C. G. R., Moody, J. D., MacGowan, B. J., Glenzer, S. H., Estabrook, K. G., Decker, C., and Landen, O. L.
- Subjects
- *
RAMAN effect , *PLASMA devices , *LIGHT scattering , *ELECTRON-ion collisions - Abstract
Measurements show the scaling of stimulated Raman scattering (SRS) with laser intensity and plasma electron temperature under the conditions expected in ignition experiments. The scaling of the scattered energy with each parameter follows a power law with a small exponent (of order 1). Comparison with simulations suggests SRS is nonlinearly saturated in these cases. Further experiments with high Z dopants showed that the effect of electron-ion collisions on the measured SRS is primarily due to the inverse bremsstrahlung absorption of the scattered light. [ABSTRACT FROM AUTHOR]
- Published
- 2003
- Full Text
- View/download PDF
273. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing.
- Author
-
Glenzer, S. H., Berger, R. L., Divol, L. M., Kirkwood, R. K., MacGowan, B. J., Moody, J. D., Langdon, A. B., Suter, L. J., and Williams, E. A.
- Subjects
- *
SCATTERING (Physics) , *INERTIAL confinement fusion , *PLASMA gases - Abstract
The effects of compressibility on the linear and nonlinear properties of the magnetized wake are examined, with an emphasis on the high speed flow situation. It is found that compressibility can modify properties of this system previously identified for the incompressible case. Of particular interest is an investigation of how the properties of the magnetized wake vary with the sonic Mach number. It is found that, in general, the growth rates of the unstable sinuous and varicose modes decrease with increasing Mach number and with increasing Alfvén number. However, at high sonic Mach numbers the varicose modes can have a growth rate which increases as the spanwise wave number increases, a significant difference from the incompressible case. The linear compressible equations are solved by a Chebyshev collocation technique. Nonlinear computations based on a finite volume method are also presented. Growth rates computed by both codes in the linear regime are in excellent agreement. At long times the system relaminarizes to an overall accelerated and broadened wake channel. It is found that variations in the Mach and Alfvén numbers have a strong affect on the evolution of the magnetized wake, e.g., for high M fast magnetosonic shocks are observed to develop. [ABSTRACT FROM AUTHOR]
- Published
- 2001
- Full Text
- View/download PDF
274. Publisher's Note: "Fuel convergence sensitivity in indirect drive implosions" [Phys. Plasmas 28, 042705 (2021)].
- Author
-
Landen, O. L., Lindl, J. D., Haan, S. W., Casey, D. T., Celliers, P. M., Fittinghoff, D. N., Gharibyan, N., Goncharov, V. N., Grim, G. P., Hartouni, E. P., Hurricane, O. A., MacGowan, B. J., MacLaren, S. A., Meaney, K. D., Millot, M., Milovich, J. L., Patel, P. K., Robey, H. S., Springer, P. T., and Volegov, P. L.
- Subjects
- *
PUBLISHING , *TRIANGLES - Abstract
Color-coded curves are analytic fits from slight modification of Eq. (A4), where solid are 4-shock and 2-shock designs and dashed are 3-shock. Stagnated fuel internal energy vs peak fuel velocity from 1D simulation database of intentionally dudded implosions to avoid alpha heating complication. Publisher's Note: "Fuel convergence sensitivity in indirect drive implosions" [Phys. [Extracted from the article]
- Published
- 2021
- Full Text
- View/download PDF
275. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.
- Author
-
Park, Hye-Sook, Dewald, E. D., Glenzer, S., Kalantar, D. H., Kilkenny, J. D., MacGowan, B. J., Maddox, B. R., Milovich, J. L., Prasad, R. R., Remington, B. A., Robey, H. F., and Thomas, C. A.
- Subjects
- *
HOT carriers , *ELECTRON distribution , *THERMODYNAMICS , *ELECTRON backscattering , *LASER-plasma interactions , *HYDRODYNAMICS , *IMAGING systems - Abstract
Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
276. Images of the laser entrance hole from the static x-ray imager at NIF.
- Author
-
Schneider, M. B., Jones, O. S., Meezan, N. B., Milovich, J. L., Town, R. P., Alvarez, S. S., Beeler, R. G., Bradley, D. K., Celeste, J. R., Dixit, S. N., Edwards, M. J., Haugh, M. J., Kalantar, D. H., Kline, J. L., Kyrala, G. A., Landen, O. L., MacGowan, B. J., Michel, P., Moody, J. D., and Oberhelman, S. K.
- Subjects
- *
INERTIAL confinement fusion , *INDUSTRIAL lasers , *HOLES (Electron deficiencies) , *CCD cameras , *IMAGING systems , *X-rays , *LIGHTING , *LIGHT filters , *OPTICAL resolution - Abstract
The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
277. Azimuthal Drive Asymmetry in Inertial Confinement Fusion Implosions on the National Ignition Facility.
- Author
-
Rinderknecht, Hans G., Casey, D. T., Hatarik, R., Bionta, R. M., MacGowan, B. J., Patel, P., Landen, O. L., Hartouni, E. P., and Hurricane, O. A.
- Subjects
- *
INERTIAL confinement fusion , *DOPPLER effect - Abstract
Data from nuclear diagnostics present correlated signatures of azimuthal implosion asymmetry in recent indirect-drive inertial confinement fusion (ICF) implosion campaigns performed at the National Ignition Facility (NIF). The mean hot-spot velocity, inferred from the Doppler shift of 14 MeV neutrons produced by deuterium-tritium (DT) fusion, is systematically directed toward one azimuthal half of the NIF target chamber, centered on ϕ≈70°. Areal density (ρR) asymmetry of the converged DT fuel, inferred from nuclear activation diagnostics, presents a minimum ρR in the same direction as the hot-spot velocity and with ΔρR amplitude correlated with velocity magnitude. These two correlated observations, which are seen in all recent campaigns with cryogenic layers of DT fuel, are a known signature of asymmetry in the fuel convergence, implying a systematic azimuthal drive asymmetry across a wide range of shot and target configurations. The direction of the implied radiation asymmetry is observed to cluster toward the hohlraum diagnostic windows. This low-mode asymmetry degrades hot-spot conditions at peak convergence and limits implosion performance and yield. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
278. Time-resolved soft x-ray imaging diagnostic for use at the NIF and OMEGA lasers.
- Author
-
Schneider, M. B., Holder, J. P., James, D. L., Bruns, H. C., Celeste, J. R., Compton, S., Costa, R. L., Ellis, A. D., Emig, J. A., Hargrove, D., Kalantar, D. H., MacGowan, B. J., Power, G. D., Sorce, C., Rekow, V., Widmann, K., Young, B. K., Young, P. E., Garcia, O. F., and McKenney, J.
- Subjects
- *
TIME-resolved spectroscopy , *IMAGING systems , *LASERS , *NONLINEAR optics , *GRENZ rays - Abstract
The soft x-ray imager (SXRI) built for the first experiments at the National Ignition Facility (NIF) has four soft x-ray channels and one hard x-ray channel. The SXRI is a snout that mounts to a four strip gated imager. This produces four soft x-ray images per strip, which can be separated in time by ∼60 ps. Each soft x-ray channel consists of a mirror plus a filter. The diagnostic was used to study x-ray burnthrough of hot Hohlraum targets at the NIF and OMEGA lasers. The SXRI snout design and issues involved in selecting the desired soft x-ray channels are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
279. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility.
- Author
-
Marozas, J. A., Hohenberger, M., Rosenberg, M. J., Turnbull, D., Collins, T. J. B., Radha, P. B., McKenty, P. W., Zuegel, J. D., Marshall, F. J., Regan, S. P., Sangster, T. C., Seka, W., Campbell, E. M., Goncharov, V. N., Bowers, M. W., Di Nicola, J.-M. G., Erbert, G., MacGowan, B. J., Pelz, L. J., and Yang, S. T.
- Subjects
- *
ENERGY transfer , *INERTIAL confinement fusion , *WAVELENGTHS - Abstract
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
280. Hohlraum energetics with smoothed laser beams.
- Author
-
Glenzer, S. H., Suter, L. J., Berger, R. L., Estabrook, K. G., Hammel, B. A., Kauffman, R. L., Kirkwood, R. K., MacGowan, B. J., Moody, J. D., Rothenberg, J. E., and Turner, R. E.
- Subjects
- *
LASER beams , *SCATTERING (Physics) - Abstract
Measurements of radiation temperatures from empty and gas-filled hohlraums heated at the Nova Laser Facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] show efficient coupling of the laser power to the target when applying laser beam smoothing techniques. Scattering losses are reduced to the 3% level while the radiation temperatures increased by ∼15 eV for smoothed laser beams. The experimental findings and supporting calculations indicate that filamentation and gain for stimulated Raman and Brillouin scattering is suppressed in the hohlraum plasma for smoothed laser beams. The scaling of the radiation temperature is well described by integrated radiation hydrodynamic LASNEX modeling [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 85 (1975)] following the Marshak scaling. Peak radiation temperatures are in excess of 230 eV in gas-filled hohlraums in agreement with the detailed LASNEX modeling. © 2000 American Institute of Physics. [ABSTRACT FROM AUTHOR]
- Published
- 2000
- Full Text
- View/download PDF
281. The impact of low-mode symmetry on inertial fusion energy output in the burning plasma state.
- Author
-
Ralph JE, Ross JS, Zylstra AB, Kritcher AL, Robey HF, Young CV, Hurricane OA, Pak A, Callahan DA, Baker KL, Casey DT, Döppner T, Divol L, Hohenberger M, Pape SL, Patel PK, Tommasini R, Ali SJ, Amendt PA, Atherton LJ, Bachmann B, Bailey D, Benedetti LR, Berzak Hopkins L, Betti R, Bhandarkar SD, Biener J, Bionta RM, Birge NW, Bond EJ, Bradley DK, Braun T, Briggs TM, Bruhn MW, Celliers PM, Chang B, Chapman T, Chen H, Choate C, Christopherson AR, Clark DS, Crippen JW, Dewald EL, Dittrich TR, Edwards MJ, Farmer WA, Field JE, Fittinghoff D, Frenje J, Gaffney J, Gatu Johnson M, Glenzer SH, Grim GP, Haan S, Hahn KD, Hall GN, Hammel BA, Harte J, Hartouni E, Heebner JE, Hernandez VJ, Herrmann HW, Herrmann MC, Hinkel DE, Ho DD, Holder JP, Hsing WW, Huang H, Humbird KD, Izumi N, Jarrott LC, Jeet J, Jones O, Kerbel GD, Kerr SM, Khan SF, Kilkenny J, Kim Y, Geppert-Kleinrath H, Geppert-Kleinrath V, Kong C, Koning JM, Kroll JJ, Kruse MKG, Kustowski B, Landen OL, Langer S, Larson D, Lemos NC, Lindl JD, Ma T, MacDonald MJ, MacGowan BJ, Mackinnon AJ, MacLaren SA, MacPhee AG, Marinak MM, Mariscal DA, Marley EV, Masse L, Meaney KD, Meezan NB, Michel PA, Millot M, Milovich JL, Moody JD, Moore AS, Morton JW, Murphy TJ, Newman K, Di Nicola JG, Nikroo A, Nora R, Patel MV, Pelz LJ, Peterson JL, Ping Y, Pollock BB, Ratledge M, Rice NG, Rinderknecht HG, Rosen M, Rubery MS, Salmonson JD, Sater J, Schiaffino S, Schlossberg DJ, Schneider MB, Schroeder CR, Scott HA, Sepke SM, Sequoia K, Sherlock MW, Shin S, Smalyuk VA, Spears BK, Springer PT, Stadermann M, Stoupin S, Strozzi DJ, Suter LJ, Thomas CA, Town RPJ, Trosseille C, Tubman ER, Volegov PL, Weber CR, Widmann K, Wild C, Wilde CH, Van Wonterghem BM, Woods DT, Woodworth BN, Yamaguchi M, Yang ST, and Zimmerman GB
- Abstract
Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1. Analysis shows that including these three corrections alone accounts for the measured fusion performance variability in the two highest performing experimental campaigns on the NIF to within error. Here we quantify the performance sensitivity to mode-2 symmetry in the burning plasma regime and apply the results, in the form of an empirical correction to a 1D performance model. Furthermore, we find the sensitivity to mode-2 determined through a series of integrated 2D radiation hydrodynamic simulations to be consistent with the experimentally determined sensitivity only when including alpha-heating., (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2024
- Full Text
- View/download PDF
282. Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Allen A, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Archuleta TN, Arend M, Arnold P, Arnold T, Arsenlis A, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AAS, Aybar N, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger RL, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Boyle D, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs R, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman TD, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christiansen NS, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins GW, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Danly C, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Do A, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, Drury O, DuBois DF, DuBois PF, Dunham G, Durocher M, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Fehrenbach T, Feit M, Felker B, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geddes CGR, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani FR, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Higginson DP, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins LF, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Ivanovich I, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Krauland CM, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kur E, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lagin L, Lahmann B, Lairson B, Landen OL, Land T, Lane M, Laney D, Langdon AB, Langenbrunner J, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Manuel MJ, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez JI, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora RC, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Oesterle AL, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedretti A, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phillion D, Phipps TJ, Piceno E, Pickworth L, Ping Y, Pino J, Piston K, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo PW, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen MD, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmit PF, Smidt JM, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Smith R, Schölmerich M, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanley J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CH, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Stutz J, Summers L, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Wharton KB, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmann K, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff PJ, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Yu J, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.
- Published
- 2024
- Full Text
- View/download PDF
283. Observations and properties of the first laboratory fusion experiment to exceed a target gain of unity.
- Author
-
Pak A, Zylstra AB, Baker KL, Casey DT, Dewald E, Divol L, Hohenberger M, Moore AS, Ralph JE, Schlossberg DJ, Tommasini R, Aybar N, Bachmann B, Bionta RM, Fittinghoff D, Gatu Johnson M, Geppert Kleinrath H, Geppert Kleinrath V, Hahn KD, Rubery MS, Landen OL, Moody JD, Aghaian L, Allen A, Baxamusa SH, Bhandarkar SD, Biener J, Birge NW, Braun T, Briggs TM, Choate C, Clark DS, Crippen JW, Danly C, Döppner T, Durocher M, Erickson M, Fehrenbach T, Freeman M, Havre M, Hayes S, Hilsabeck T, Holder JP, Humbird KD, Hurricane OA, Izumi N, Kerr SM, Khan SF, Kim YH, Kong C, Jeet J, Kozioziemski B, Kritcher AL, Lamb KM, Lemos NC, MacGowan BJ, Mackinnon AJ, MacPhee AG, Marley EV, Meaney K, Millot M, Di Nicola JG, Nikroo A, Nora R, Ratledge M, Ross JS, Shin SJ, Smalyuk VA, Stadermann M, Stoupin S, Suratwala T, Trosseille C, Van Wonterghem B, Weber CR, Wild C, Wilde C, Wooddy PT, Woodworth BN, and Young CV
- Abstract
An indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.16 MJ of total fusion yield, producing a target gain G=1.5±0.1 exceeding unity for the first time in a laboratory experiment [Phys. Rev. E 109, 025204 (2024)10.1103/PhysRevE.109.025204]. Herein we describe the experimental evidence for the increased drive on the capsule using additional laser energy and control over known degradation mechanisms, which are critical to achieving high performance. Improved fuel compression relative to previous megajoule-yield experiments is observed. Novel signatures of the ignition and burn propagation to high yield can now be studied in the laboratory for the first time.
- Published
- 2024
- Full Text
- View/download PDF
284. Design of the first fusion experiment to achieve target energy gain G>1.
- Author
-
Kritcher AL, Zylstra AB, Weber CR, Hurricane OA, Callahan DA, Clark DS, Divol L, Hinkel DE, Humbird K, Jones O, Lindl JD, Maclaren S, Strozzi DJ, Young CV, Allen A, Bachmann B, Baker KL, Braun T, Brunton G, Casey DT, Chapman T, Choate C, Dewald E, Di Nicola JG, Edwards MJ, Haan S, Fehrenbach T, Hohenberger M, Kur E, Kustowski B, Kong C, Landen OL, Larson D, MacGowan BJ, Marinak M, Millot M, Nikroo A, Nora R, Pak A, Patel PK, Ralph JE, Ratledge M, Rubery MS, Schlossberg DJ, Sepke SM, Stadermann M, Suratwala TI, Tommasini R, Town R, Woodworth B, Van Wonterghem B, and Wild C
- Abstract
In this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett. 132, 065102 (2024)10.1103/PhysRevLett.132.065102], performed at the National Ignition Facility, where the fusion energy produced (3.15 MJ) exceeded the amount of laser energy required to drive the target (2.05 MJ). Following the demonstration of ignition according to the Lawson criterion N210808, experiments were impacted by nonideal experimental fielding conditions, such as increased (known) target defects that seeded hydrodynamic instabilities or unintentional low-mode asymmetries from nonuniformities in the target or laser delivery, which led to reduced fusion yields less than 1 MJ. This Letter details design changes, including using an extended higher-energy laser pulse to drive a thicker high-density carbon (also known as diamond) capsule, that led to increased fusion energy output compared to N210808 as well as improved robustness for achieving high fusion energies (greater than 1 MJ) in the presence of significant low-mode asymmetries. For this design, the burnup fraction of the deuterium and tritium (DT) fuel was increased (approximately 4% fuel burnup and a target gain of approximately 1.5 compared to approximately 2% fuel burnup and target gain approximately 0.7 for N210808) as a result of increased total (DT plus capsule) areal density at maximum compression compared to N210808. Radiation-hydrodynamic simulations of this design predicted achieving target gain greater than 1 and also the magnitude of increase in fusion energy produced compared to N210808. The plasma conditions and hotspot power balance (fusion power produced vs input power and power losses) using these simulations are presented. Since the drafting of this manuscript, the results of this paper have been replicated and exceeded (N230729) in this design, together with a higher-quality diamond capsule, setting a new record of approximately 3.88MJ of fusion energy and fusion energy target gain of approximately 1.9.
- Published
- 2024
- Full Text
- View/download PDF
285. Dynamics and Power Balance of Near Unity Target Gain Inertial Confinement Fusion Implosions.
- Author
-
Pak A, Divol L, Casey DT, Khan SF, Kritcher AL, Ralph JE, Tommasini R, Trosseille C, Zylstra AB, Baker KL, Birge NW, Bionta R, Bachmann B, Dewald EL, Doeppner T, Freeman MS, Fittinghoff DN, Geppert-Kleinrath V, Geppert-Kleinrath H, Hahn KD, Hohenberger M, Holder J, Kerr S, Kim Y, Kozioziemski B, Lamb K, MacGowan BJ, MacPhee AG, Meaney KD, Moore AS, Schlossberg DJ, Stoupin S, Volegov P, Wilde C, Young CV, Landen OL, and Town RPJ
- Abstract
The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses. This leads to reacting plasmas that reach peak fusion production at later times with increased size, temperature, mass and with lower emission weighted areal densities. Analytic models are consistent with the observations and inferences for how these quantities evolve as the rate of fusion self-heating, fusion yield, and target gain increase. At peak fusion production, it is found that as temperatures and target gains rise, the expansion power loss increases to a near constant ratio of the fusion self-heating power. This is consistent with models that indicate that the expansion losses dominate the dynamics in this regime.
- Published
- 2023
- Full Text
- View/download PDF
286. Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Arend M, Arnold P, Arnold T, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AS, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger R, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman T, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins G, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, DuBois DF, DuBois PF, Dunham G, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Feit M, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani F, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins L, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lahmann B, Lairson B, Landen OL, Langenbrunner J, Lagin L, Land T, Lane M, Laney D, Langdon AB, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal C, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora R, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phipps TJ, Piceno E, Ping Y, Pickworth L, Pino J, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo P, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen M, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmitt MJ, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schölmerich M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CB, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Widmann K, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff J, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.
- Published
- 2022
- Full Text
- View/download PDF
287. Experimental achievement and signatures of ignition at the National Ignition Facility.
- Author
-
Zylstra AB, Kritcher AL, Hurricane OA, Callahan DA, Ralph JE, Casey DT, Pak A, Landen OL, Bachmann B, Baker KL, Berzak Hopkins L, Bhandarkar SD, Biener J, Bionta RM, Birge NW, Braun T, Briggs TM, Celliers PM, Chen H, Choate C, Clark DS, Divol L, Döppner T, Fittinghoff D, Edwards MJ, Gatu Johnson M, Gharibyan N, Haan S, Hahn KD, Hartouni E, Hinkel DE, Ho DD, Hohenberger M, Holder JP, Huang H, Izumi N, Jeet J, Jones O, Kerr SM, Khan SF, Geppert Kleinrath H, Geppert Kleinrath V, Kong C, Lamb KM, Le Pape S, Lemos NC, Lindl JD, MacGowan BJ, Mackinnon AJ, MacPhee AG, Marley EV, Meaney K, Millot M, Moore AS, Newman K, Di Nicola JG, Nikroo A, Nora R, Patel PK, Rice NG, Rubery MS, Sater J, Schlossberg DJ, Sepke SM, Sequoia K, Shin SJ, Stadermann M, Stoupin S, Strozzi DJ, Thomas CA, Tommasini R, Trosseille C, Tubman ER, Volegov PL, Weber CR, Wild C, Woods DT, Yang ST, and Young CV
- Abstract
An inertial fusion implosion on the National Ignition Facility, conducted on August 8, 2021 (N210808), recently produced more than a megajoule of fusion yield and passed Lawson's criterion for ignition [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. We describe the experimental improvements that enabled N210808 and present the first experimental measurements from an igniting plasma in the laboratory. Ignition metrics like the product of hot-spot energy and pressure squared, in the absence of self-heating, increased by ∼35%, leading to record values and an enhancement from previous experiments in the hot-spot energy (∼3×), pressure (∼2×), and mass (∼2×). These results are consistent with self-heating dominating other power balance terms. The burn rate increases by an order of magnitude after peak compression, and the hot-spot conditions show clear evidence for burn propagation into the dense fuel surrounding the hot spot. These novel dynamics and thermodynamic properties have never been observed on prior inertial fusion experiments.
- Published
- 2022
- Full Text
- View/download PDF
288. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition.
- Author
-
Kritcher AL, Zylstra AB, Callahan DA, Hurricane OA, Weber CR, Clark DS, Young CV, Ralph JE, Casey DT, Pak A, Landen OL, Bachmann B, Baker KL, Berzak Hopkins L, Bhandarkar SD, Biener J, Bionta RM, Birge NW, Braun T, Briggs TM, Celliers PM, Chen H, Choate C, Divol L, Döppner T, Fittinghoff D, Edwards MJ, Gatu Johnson M, Gharibyan N, Haan S, Hahn KD, Hartouni E, Hinkel DE, Ho DD, Hohenberger M, Holder JP, Huang H, Izumi N, Jeet J, Jones O, Kerr SM, Khan SF, Geppert Kleinrath H, Geppert Kleinrath V, Kong C, Lamb KM, Le Pape S, Lemos NC, Lindl JD, MacGowan BJ, Mackinnon AJ, MacPhee AG, Marley EV, Meaney K, Millot M, Moore AS, Newman K, Di Nicola JG, Nikroo A, Nora R, Patel PK, Rice NG, Rubery MS, Sater J, Schlossberg DJ, Sepke SM, Sequoia K, Shin SJ, Stadermann M, Stoupin S, Strozzi DJ, Thomas CA, Tommasini R, Trosseille C, Tubman ER, Volegov PL, Wild C, Woods DT, and Yang ST
- Abstract
We present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. This design uses the indirect drive inertial confinement fusion approach to heat and compress a central "hot spot" of deuterium-tritium (DT) fuel using a surrounding dense DT fuel piston. Ignition occurs when the heating from absorption of α particles created in the fusion process overcomes the loss mechanisms in the system for a duration of time. This letter describes key design changes which enabled a ∼3-6× increase in an ignition figure of merit (generalized Lawson criterion) [Phys. Plasmas 28, 022704 (2021)1070-664X10.1063/5.0035583, Phys. Plasmas 25, 122704 (2018)1070-664X10.1063/1.5049595]) and an eightfold increase in fusion energy output compared to predecessor experiments. We present simulations of the hot-spot conditions for experiment N210808 that show fundamentally different behavior compared to predecessor experiments and simulated metrics that are consistent with N210808 reaching for the first time in the laboratory "ignition."
- Published
- 2022
- Full Text
- View/download PDF
289. Publisher Correction: Burning plasma achieved in inertial fusion.
- Author
-
Zylstra AB, Hurricane OA, Callahan DA, Kritcher AL, Ralph JE, Robey HF, Ross JS, Young CV, Baker KL, Casey DT, Döppner T, Divol L, Hohenberger M, Le Pape S, Pak A, Patel PK, Tommasini R, Ali SJ, Amendt PA, Atherton LJ, Bachmann B, Bailey D, Benedetti LR, Berzak Hopkins L, Betti R, Bhandarkar SD, Biener J, Bionta RM, Birge NW, Bond EJ, Bradley DK, Braun T, Briggs TM, Bruhn MW, Celliers PM, Chang B, Chapman T, Chen H, Choate C, Christopherson AR, Clark DS, Crippen JW, Dewald EL, Dittrich TR, Edwards MJ, Farmer WA, Field JE, Fittinghoff D, Frenje J, Gaffney J, Gatu Johnson M, Glenzer SH, Grim GP, Haan S, Hahn KD, Hall GN, Hammel BA, Harte J, Hartouni E, Heebner JE, Hernandez VJ, Herrmann H, Herrmann MC, Hinkel DE, Ho DD, Holder JP, Hsing WW, Huang H, Humbird KD, Izumi N, Jarrott LC, Jeet J, Jones O, Kerbel GD, Kerr SM, Khan SF, Kilkenny J, Kim Y, Geppert Kleinrath H, Geppert Kleinrath V, Kong C, Koning JM, Kroll JJ, Kruse MKG, Kustowski B, Landen OL, Langer S, Larson D, Lemos NC, Lindl JD, Ma T, MacDonald MJ, MacGowan BJ, Mackinnon AJ, MacLaren SA, MacPhee AG, Marinak MM, Mariscal DA, Marley EV, Masse L, Meaney K, Meezan NB, Michel PA, Millot M, Milovich JL, Moody JD, Moore AS, Morton JW, Murphy T, Newman K, Di Nicola JG, Nikroo A, Nora R, Patel MV, Pelz LJ, Peterson JL, Ping Y, Pollock BB, Ratledge M, Rice NG, Rinderknecht H, Rosen M, Rubery MS, Salmonson JD, Sater J, Schiaffino S, Schlossberg DJ, Schneider MB, Schroeder CR, Scott HA, Sepke SM, Sequoia K, Sherlock MW, Shin S, Smalyuk VA, Spears BK, Springer PT, Stadermann M, Stoupin S, Strozzi DJ, Suter LJ, Thomas CA, Town RPJ, Tubman ER, Trosseille C, Volegov PL, Weber CR, Widmann K, Wild C, Wilde CH, Van Wonterghem BM, Woods DT, Woodworth BN, Yamaguchi M, Yang ST, and Zimmerman GB
- Published
- 2022
- Full Text
- View/download PDF
290. Burning plasma achieved in inertial fusion.
- Author
-
Zylstra AB, Hurricane OA, Callahan DA, Kritcher AL, Ralph JE, Robey HF, Ross JS, Young CV, Baker KL, Casey DT, Döppner T, Divol L, Hohenberger M, Le Pape S, Pak A, Patel PK, Tommasini R, Ali SJ, Amendt PA, Atherton LJ, Bachmann B, Bailey D, Benedetti LR, Berzak Hopkins L, Betti R, Bhandarkar SD, Biener J, Bionta RM, Birge NW, Bond EJ, Bradley DK, Braun T, Briggs TM, Bruhn MW, Celliers PM, Chang B, Chapman T, Chen H, Choate C, Christopherson AR, Clark DS, Crippen JW, Dewald EL, Dittrich TR, Edwards MJ, Farmer WA, Field JE, Fittinghoff D, Frenje J, Gaffney J, Gatu Johnson M, Glenzer SH, Grim GP, Haan S, Hahn KD, Hall GN, Hammel BA, Harte J, Hartouni E, Heebner JE, Hernandez VJ, Herrmann H, Herrmann MC, Hinkel DE, Ho DD, Holder JP, Hsing WW, Huang H, Humbird KD, Izumi N, Jarrott LC, Jeet J, Jones O, Kerbel GD, Kerr SM, Khan SF, Kilkenny J, Kim Y, Geppert Kleinrath H, Geppert Kleinrath V, Kong C, Koning JM, Kroll JJ, Kruse MKG, Kustowski B, Landen OL, Langer S, Larson D, Lemos NC, Lindl JD, Ma T, MacDonald MJ, MacGowan BJ, Mackinnon AJ, MacLaren SA, MacPhee AG, Marinak MM, Mariscal DA, Marley EV, Masse L, Meaney K, Meezan NB, Michel PA, Millot M, Milovich JL, Moody JD, Moore AS, Morton JW, Murphy T, Newman K, Di Nicola JG, Nikroo A, Nora R, Patel MV, Pelz LJ, Peterson JL, Ping Y, Pollock BB, Ratledge M, Rice NG, Rinderknecht H, Rosen M, Rubery MS, Salmonson JD, Sater J, Schiaffino S, Schlossberg DJ, Schneider MB, Schroeder CR, Scott HA, Sepke SM, Sequoia K, Sherlock MW, Shin S, Smalyuk VA, Spears BK, Springer PT, Stadermann M, Stoupin S, Strozzi DJ, Suter LJ, Thomas CA, Town RPJ, Tubman ER, Trosseille C, Volegov PL, Weber CR, Widmann K, Wild C, Wilde CH, Van Wonterghem BM, Woods DT, Woodworth BN, Yamaguchi M, Yang ST, and Zimmerman GB
- Abstract
Obtaining a burning plasma is a critical step towards self-sustaining fusion energy
1 . A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4-7 . These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8 . Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
291. Observation of Hydrodynamic Flows in Imploding Fusion Plasmas on the National Ignition Facility.
- Author
-
Schlossberg DJ, Grim GP, Casey DT, Moore AS, Nora R, Bachmann B, Benedetti LR, Bionta RM, Eckart MJ, Field JE, Fittinghoff DN, Gatu Johnson M, Geppert-Kleinrath V, Hartouni EP, Hatarik R, Hsing WW, Jarrott LC, Khan SF, Kilkenny JD, Landen OL, MacGowan BJ, Mackinnon AJ, Meaney KD, Munro DH, Nagel SR, Pak A, Patel PK, Spears BK, Volegov PL, and Young CV
- Abstract
Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.
- Published
- 2021
- Full Text
- View/download PDF
292. Interpolating individual line-of-sight neutron spectrometer measurements onto the "sky" at the National Ignition Facility (NIF).
- Author
-
Hartouni EP, Bionta RM, Casey DT, Eckart MJ, Gatu-Johnson M, Grim GP, Hahn KD, Jeet J, Kerr SM, Kritcher AL, MacGowan BJ, Moore AS, Munro DH, Schlossberg DJ, and Zylstra A
- Abstract
Nuclear diagnostics provide measurements of inertial confinement fusion implosions used as metrics of performance for the shot. The interpretation of these measurements for shots with low mode asymmetries requires a way of combining the data to produce a "sky map" where the individual line-of-sight values are used to interpolate to other positions in the sky. These interpolations can provide information regarding the orientation of the low mode asymmetries. We describe the interpolation method, associated uncertainties, and correlations between different metrics, e.g., T
ion , down scatter ratio, and hot-spot velocity direction. This work is also related to recently reported studies [H. G. Rinderknecht et al., Phys. Rev. Lett. 124, 145002 (2020) and K. M. Woo et al., Phys. Plasmas 27, 062702 (2020)] of low mode asymmetries. We report an analysis that makes use of a newly commissioned line of sight, a scheme for incorporating multiple neutron spectrum measurement types, and recent work on the sources of implosion asymmetry to provide a more complete picture of implosion performance.- Published
- 2021
- Full Text
- View/download PDF
293. Evidence of Three-Dimensional Asymmetries Seeded by High-Density Carbon-Ablator Nonuniformity in Experiments at the National Ignition Facility.
- Author
-
Casey DT, MacGowan BJ, Sater JD, Zylstra AB, Landen OL, Milovich J, Hurricane OA, Kritcher AL, Hohenberger M, Baker K, Le Pape S, Döppner T, Weber C, Huang H, Kong C, Biener J, Young CV, Haan S, Nora RC, Ross S, Robey H, Stadermann M, Nikroo A, Callahan DA, Bionta RM, Hahn KD, Moore AS, Schlossberg D, Bruhn M, Sequoia K, Rice N, Farrell M, and Wild C
- Abstract
Inertial confinement fusion implosions must achieve high in-flight shell velocity, sufficient energy coupling between the hot spot and imploding shell, and high areal density (ρR=∫ρdr) at stagnation. Asymmetries in ρR degrade the coupling of shell kinetic energy to the hot spot and reduce the confinement of that energy. We present the first evidence that nonuniformity in the ablator shell thickness (∼0.5% of the total thickness) in high-density carbon experiments is a significant cause for observed 3D ρR asymmetries at the National Ignition Facility. These shell-thickness nonuniformities have significantly impacted some recent experiments leading to ρR asymmetries on the order of ∼25% of the average ρR and hot spot velocities of ∼100 km/s. This work reveals the origin of a significant implosion performance degradation in ignition experiments and places stringent new requirements on capsule thickness metrology and symmetry.
- Published
- 2021
- Full Text
- View/download PDF
294. Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility.
- Author
-
Le Pape S, Berzak Hopkins LF, Divol L, Pak A, Dewald EL, Bhandarkar S, Bennedetti LR, Bunn T, Biener J, Crippen J, Casey D, Edgell D, Fittinghoff DN, Gatu-Johnson M, Goyon C, Haan S, Hatarik R, Havre M, Ho DD, Izumi N, Jaquez J, Khan SF, Kyrala GA, Ma T, Mackinnon AJ, MacPhee AG, MacGowan BJ, Meezan NB, Milovich J, Millot M, Michel P, Nagel SR, Nikroo A, Patel P, Ralph J, Ross JS, Rice NG, Strozzi D, Stadermann M, Volegov P, Yeamans C, Weber C, Wild C, Callahan D, and Hurricane OA
- Abstract
A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg/cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ∼290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km/s resulting in a peak kinetic energy of ∼21 kJ, which once stagnated produced a total DT neutron yield of 1.9×10^{16} (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. It resulted in hot spot areal density (ρr∼0.3 g/cm^{2}) and stagnation pressure (∼360 Gbar) never before achieved in a laboratory experiment.
- Published
- 2018
- Full Text
- View/download PDF
295. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive.
- Author
-
Casey DT, Milovich JL, Smalyuk VA, Clark DS, Robey HF, Pak A, MacPhee AG, Baker KL, Weber CR, Ma T, Park HS, Döppner T, Callahan DA, Haan SW, Patel PK, Peterson JL, Hoover D, Nikroo A, Yeamans CB, Merrill FE, Volegov PL, Fittinghoff DN, Grim GP, Edwards MJ, Landen OL, Lafortune KN, MacGowan BJ, Widmayer CC, Sayre DB, Hatarik R, Bond EJ, Nagel SR, Benedetti LR, Izumi N, Khan S, Bachmann B, Spears BK, Cerjan CJ, Gatu Johnson M, and Frenje JA
- Abstract
Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.
- Published
- 2015
- Full Text
- View/download PDF
296. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.
- Author
-
Ma T, Hurricane OA, Callahan DA, Barrios MA, Casey DT, Dewald EL, Dittrich TR, Döppner T, Haan SW, Hinkel DE, Berzak Hopkins LF, Le Pape S, MacPhee AG, Pak A, Park HS, Patel PK, Remington BA, Robey HF, Salmonson JD, Springer PT, Tommasini R, Benedetti LR, Bionta R, Bond E, Bradley DK, Caggiano J, Celliers P, Cerjan CJ, Church JA, Dixit S, Dylla-Spears R, Edgell D, Edwards MJ, Field J, Fittinghoff DN, Frenje JA, Gatu Johnson M, Grim G, Guler N, Hatarik R, Herrmann HW, Hsing WW, Izumi N, Jones OS, Khan SF, Kilkenny JD, Knauer J, Kohut T, Kozioziemski B, Kritcher A, Kyrala G, Landen OL, MacGowan BJ, Mackinnon AJ, Meezan NB, Merrill FE, Moody JD, Nagel SR, Nikroo A, Parham T, Ralph JE, Rosen MD, Rygg JR, Sater J, Sayre D, Schneider MB, Shaughnessy D, Spears BK, Town RP, Volegov PL, Wan A, Widmann K, Wilde CH, and Yeamans C
- Abstract
Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.
- Published
- 2015
- Full Text
- View/download PDF
297. Early-time symmetry tuning in the presence of cross-beam energy transfer in ICF experiments on the National Ignition Facility.
- Author
-
Dewald EL, Milovich JL, Michel P, Landen OL, Kline JL, Glenn S, Jones O, Kalantar DH, Pak A, Robey HF, Kyrala GA, Divol L, Benedetti LR, Holder J, Widmann K, Moore A, Schneider MB, Döppner T, Tommasini R, Bradley DK, Bell P, Ehrlich B, Thomas CA, Shaw M, Widmayer C, Callahan DA, Meezan NB, Town RP, Hamza A, Dzenitis B, Nikroo A, Moreno K, Van Wonterghem B, Mackinnon AJ, Glenzer SH, MacGowan BJ, Kilkenny JD, Edwards MJ, Atherton LJ, and Moses EI
- Abstract
On the National Ignition Facility, the hohlraum-driven implosion symmetry is tuned using cross-beam energy transfer (CBET) during peak power, which is controlled by applying a wavelength separation between cones of laser beams. In this Letter, we present early-time measurements of the instantaneous soft x-ray drive at the capsule using reemission spheres, which show that this wavelength separation also leads to significant CBET during the first shock, even though the laser intensities are 30× smaller than during the peak. We demonstrate that the resulting early drive P2/P0 asymmetry can be minimized and tuned to <1% accuracy (well within the ±7.5% requirement for ignition) by varying the relative input powers between different cones of beams. These experiments also provide time-resolved measurements of CBET during the first 2 ns of the laser drive, which are in good agreement with radiation-hydrodynamics calculations including a linear CBET model.
- Published
- 2013
- Full Text
- View/download PDF
298. Performance of high-convergence, layered DT implosions with extended-duration pulses at the National Ignition Facility.
- Author
-
Smalyuk VA, Atherton LJ, Benedetti LR, Bionta R, Bleuel D, Bond E, Bradley DK, Caggiano J, Callahan DA, Casey DT, Celliers PM, Cerjan CJ, Clark D, Dewald EL, Dixit SN, Döppner T, Edgell DH, Edwards MJ, Frenje J, Gatu-Johnson M, Glebov VY, Glenn S, Glenzer SH, Grim G, Haan SW, Hammel BA, Hartouni EP, Hatarik R, Hatchett S, Hicks DG, Hsing WW, Izumi N, Jones OS, Key MH, Khan SF, Kilkenny JD, Kline JL, Knauer J, Kyrala GA, Landen OL, Le Pape S, Lindl JD, Ma T, MacGowan BJ, Mackinnon AJ, MacPhee AG, McNaney J, Meezan NB, Moody JD, Moore A, Moran M, Moses EI, Pak A, Parham T, Park HS, Patel PK, Petrasso R, Ralph JE, Regan SP, Remington BA, Robey HF, Ross JS, Spears BK, Springer PT, Suter LJ, Tommasini R, Town RP, Weber SV, and Widmann K
- Abstract
Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm2. Future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.
- Published
- 2013
- Full Text
- View/download PDF
299. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.
- Author
-
Ma T, Patel PK, Izumi N, Springer PT, Key MH, Atherton LJ, Benedetti LR, Bradley DK, Callahan DA, Celliers PM, Cerjan CJ, Clark DS, Dewald EL, Dixit SN, Döppner T, Edgell DH, Epstein R, Glenn S, Grim G, Haan SW, Hammel BA, Hicks D, Hsing WW, Jones OS, Khan SF, Kilkenny JD, Kline JL, Kyrala GA, Landen OL, Le Pape S, MacGowan BJ, Mackinnon AJ, MacPhee AG, Meezan NB, Moody JD, Pak A, Parham T, Park HS, Ralph JE, Regan SP, Remington BA, Robey HF, Ross JS, Spears BK, Smalyuk V, Suter LJ, Tommasini R, Town RP, Weber SV, Lindl JD, Edwards MJ, Glenzer SH, and Moses EI
- Abstract
Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.
- Published
- 2013
- Full Text
- View/download PDF
300. Soft x-ray images of the laser entrance hole of ignition hohlraums.
- Author
-
Schneider MB, Meezan NB, Alvarez SS, Alameda J, Baker S, Bell PM, Bradley DK, Callahan DA, Celeste JR, Dewald EL, Dixit SN, Döppner T, Eder DC, Edwards MJ, Fernandez-Perea M, Gullikson E, Haugh MJ, Hau-Riege S, Hsing W, Izumi N, Jones OS, Kalantar DH, Kilkenny JD, Kline JL, Kyrala GA, Landen OL, London RA, MacGowan BJ, MacKinnon AJ, McCarville TJ, Milovich JL, Mirkarimi P, Moody JD, Moore AS, Myers MD, Palma EA, Palmer N, Pivovaroff MJ, Ralph JE, Robinson J, Soufli R, Suter LJ, Teruya AT, Thomas CA, Town RP, Vernon SP, Widmann K, and Young BK
- Abstract
Hohlraums are employed at the national ignition facility to convert laser energy into a thermal x-radiation drive, which implodes a fusion capsule, thus compressing the fuel. The x-radiation drive is measured with a low spectral resolution, time-resolved x-ray spectrometer, which views the region around the hohlraum's laser entrance hole. This measurement has no spatial resolution. To convert this to the drive inside the hohlraum, the size of the hohlraum's opening ("clear aperture") and fraction of the measured x-radiation, which comes from this opening, must be known. The size of the clear aperture is measured with the time integrated static x-ray imager (SXI). A soft x-ray imaging channel has been added to the SXI to measure the fraction of x-radiation emitted from inside the clear aperture. A multilayer mirror plus filter selects an x-ray band centered at 870 eV, near the peak of the x-ray spectrum of a 300 eV blackbody. Results from this channel and corrections to the x-radiation drive are discussed.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.