251. The Antibacterial Activity of 1,2,3-triazole- and 1,2,4-Triazole-containing Hybrids against Staphylococcus aureus: An Updated Review (2020- Present)
- Author
-
Jie Li and Junwei Zhang
- Subjects
Cefatrizine ,Topoisomerase IV ,General Medicine ,Biology ,medicine.disease_cause ,DNA gyrase ,Microbiology ,chemistry.chemical_compound ,chemistry ,Staphylococcus aureus ,Drug Discovery ,medicine ,biology.protein ,Efflux ,Bioisostere ,Antibacterial activity ,Pathogen ,medicine.drug - Abstract
Abstract: Staphylococcus aureus (S. aureus), a prominent, highly contagious nosocomial and com-munity-acquired bacterial pathogen, can cause a broad spectrum of diseases. Antibiotic-resistant S. aureus strains, which pose potential causes of morbidity and mortality, have continuously emerged in recent years, calling for novel anti-S. aureus agents. 1,2,3-Triazole and 1,2,4-triazole, the bioisostere of amides, esters, and carboxylic acids, are potent inhibitors of DNA gyrase, topoisomerase IV, efflux pumps, filamentous temperature-sensitive protein Z, and penicillin-binding protein. In particular, 1,2,3-triazole- and 1,2,4-triazole-containing hybrids have the potential to exert dual or multiple anti-bacterial mechanisms of action. Moreover, 1,2,3-triazole-cephalosporin hybrid cefatrizine, 1,2,3-triazole-oxazolidinone hybrid radezolid, and 1,2,4-triazolo[1,5-a]pyrimidine hybrid essramycin, have already been used in clinical practice to treat bacterial infections. Hence, 1,2,3-triazole- and 1,2,4-triazole-containing hybrids possess promising broad-spectrum antibacterial activity against diverse clinically significant organisms, including drug-resistant forms. This review is an update on the latest development of 1,2,3-triazole- and 1,2,4-triazole-containing hybrids with anti-S. aureus activity, cov-ering articles published between January 2020 and July 2021.
- Published
- 2022