251. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia
- Author
-
Carolyn M. Sue, Yiran Guo, Joseph T. Glessner, Hakon Hakonarson, Minal Menezes, Jianguo Zhang, David R. Thorburn, Brendan J. Keating, Susan Arbuckle, Sandra T. Cooper, Paul Kirwan, Zhijun Li, Xun Xu, Lisa G. Riley, John Christodoulou, Ryan L. Davis, Daoyuan Dong, Stephen I. Alexander, and Jiankang Li
- Subjects
Ribosomal Proteins ,Adolescent ,Mitochondrial translation ,Protein subunit ,Hearing Loss, Sensorineural ,Molecular Sequence Data ,Respiratory chain ,Mitochondrion ,Biology ,medicine.disease_cause ,Mitochondrial Proteins ,Ribosomal protein ,Genetics ,medicine ,Humans ,Renal Insufficiency ,Child ,Molecular Biology ,Genetics (clinical) ,Mutation ,Transition (genetics) ,Base Sequence ,Infant ,General Medicine ,Ribosomal RNA ,Molecular biology ,Mitochondria ,Child, Preschool ,Protein Biosynthesis ,Disease Progression ,Acidosis, Lactic ,Female ,Liver Failure - Abstract
Functional defects of the mitochondrial translation machinery, as a result of mutations in nuclear-encoded genes, have been associated with combined oxidative phosphorylation (OXPHOS) deficiencies. We report siblings with congenital sensorineural deafness and lactic acidemia in association with combined respiratory chain (RC) deficiencies of complexes I, III and IV observed in fibroblasts and liver. One of the siblings had a more severe phenotype showing progressive hepatic and renal failure. Whole-exome sequencing revealed a homozygous mutation in the gene encoding mitochondrial ribosomal protein S7 (MRPS7), a c.550A>G transition that encodes a substitution of valine for a highly conserved methionine (p.Met184Val) in both affected siblings. MRPS7 is a 12S ribosomal RNA-binding subunit of the small mitochondrial ribosomal subunit, and is required for the assembly of the small ribosomal subunit. Pulse labeling of mitochondrial protein synthesis products revealed impaired mitochondrial protein synthesis in patient fibroblasts. Exogenous expression of wild-type MRPS7 in patient fibroblasts rescued complexes I and IV activities, demonstrating the deleterious effect of the mutation on RC function. Moreover, reduced 12S rRNA transcript levels observed in the patient's fibroblasts were also restored to normal levels by exogenous expression of wild-type MRPS7. Our data demonstrate the pathogenicity of the identified MRPS7 mutation as a novel cause of mitochondrial RC dysfunction, congenital sensorineural deafness and progressive hepatic and renal failure.
- Published
- 2015