251. Laser-Induced Intracellular Delivery: Exploiting Gold-Coated Spiky Polymeric Nanoparticles and Gold Nanorods under Near-Infrared Pulses for Single-Cell Nano-Photon-Poration.
- Author
-
Kumar A, Nahak BK, Gupta P, Santra TS, and Tseng FG
- Abstract
This study explores the potential of laser-induced nano-photon-poration as a non-invasive technique for the intracellular delivery of micro/macromolecules at the single-cell level. This research proposes the utilization of gold-coated spiky polymeric nanoparticles (Au-PNPs) and gold nanorods (GNRs) to achieve efficient intracellular micro/macromolecule delivery at the single-cell level. By shifting the operating wavelength towards the near-infrared (NIR) range, the intracellular delivery efficiency and viability of Au-PNP-mediated photon-poration are compared to those using GNR-mediated intracellular delivery. Employing Au-PNPs as mediators in conjunction with nanosecond-pulsed lasers, a highly efficient intracellular delivery, while preserving high cell viability, is demonstrated. Laser pulses directed at Au-PNPs generate over a hundred hot spots per particle through plasmon resonance, facilitating the formation of photothermal vapor nanobubbles (PVNBs). These PVNBs create transient pores, enabling the gentle transfer of cargo from the extracellular to the intracellular milieu, without inducing deleterious effects in the cells. The optimization of wavelengths in the NIR region, coupled with low laser fluence (27 mJ/cm
2 ) and nanoparticle concentrations (34 µg/mL), achieves outstanding delivery efficiencies (96%) and maintains high cell viability (up to 99%) across the various cell types, including cancer and neuronal cells. Importantly, sustained high cell viability (90-95%) is observed even 48 h post laser exposure. This innovative development holds considerable promise for diverse applications, encompassing drug delivery, gene therapy, and regenerative medicine. This study underscores the efficiency and versatility of the proposed technique, positioning it as a valuable tool for advancing intracellular delivery strategies in biomedical applications.- Published
- 2024
- Full Text
- View/download PDF