251. Solution and stability of an n-dimensional functional equation
- Author
-
Sandra Pinelas, Vediyappan Govindan, and K. Tamilvanan
- Subjects
010506 paleontology ,Numerical Analysis ,N dimensional ,Applied Mathematics ,Mathematical analysis ,06 humanities and the arts ,0603 philosophy, ethics and religion ,01 natural sciences ,Stability (probability) ,060302 philosophy ,Functional equation ,Analysis ,0105 earth and related environmental sciences ,Mathematics - Abstract
In this paper, we prove the general solution and generalized Hyers–Ulam stability of n-dimensional functional equations of the form ∑ i = 1 i ≠ j ≠ k n f ( - x i - x j - x k + ∑ l = 1 l ≠ i ≠ j ≠ k n x l ) = ( n 3 - 9 n 2 + 20 n - 12 6 ) ∑ i = 1 n f ( x i ) , \sum_{\begin{subarray}{c}i=1\\ i\neq j\neq k\end{subarray}}^{n}f\biggl{(}-x_{i}-x_{j}-x_{k}+\sum_{% \begin{subarray}{c}l=1\\ l\neq i\neq j\neq k\end{subarray}}^{n}x_{l}\biggr{)}=\biggl{(}\frac{n^{3}-9n^{% 2}+20n-12}{6}\biggr{)}\sum_{i=1}^{n}f(x_{i}), where n is a fixed positive integer with ℕ - { 0 , 1 , 2 , 3 , 4 } \mathbb{N}-\{0,1,2,3,4\} , in a Banach space via direct and fixed point methods.
- Published
- 2019
- Full Text
- View/download PDF