201. Role of tactic response on the mobilization of motile bacteria through micrometer-sized pores
- Author
-
Jose-Carlos Castilla-Alcantara, Ali Akbari, Subhasis Ghoshal, Jose-Julio Ortega-Calvo, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), Castilla-Alcántara, J. C., Ghoshal, S., Ortega Calvo, J. J., Castilla-Alcántara, J. C. [0000-0002-9123-1052], Ghoshal, S. [0000-0001-9968-6150], and Ortega Calvo, J. J. [0000-0003-1672-5199]
- Subjects
Environmental Engineering ,Pore ,Pseudomonas putida ,Bioaccessibility ,Contaminant ,Pollution ,Soil ,Biodegradation, Environmental ,Taxis ,Environmental Chemistry ,Soil Pollutants ,Bacterial motility ,Waste Management and Disposal ,Soil Microbiology - Abstract
10 páginas.- 6 figuras.- 1 tabla.- referencias .- . Supplementary data Figures showing the FIB-SEM images of the membrane bioreactor experiments, the tactic response of Pseudomonas putida G7 under sonication conditions in transport assays and capillary test and bioreactor transport experiments with different concentrations of the chemoeffectors. Tables showing the experimental growth control with chemical effectors and bacterial accessibility to the different porous fractions of contaminated soil. Supplementary data to this article can be found online at: doi.org/10.1016/j.scitotenv.2022.154938, A major cause of high bioremediation endpoints is the limited bioaccessibility to residual contaminants resting in soil pores with diameters close to the size exclusion limit of bacterial cells. Under nongrowing conditions and in the absence of hydraulic flow, we examined how the tactic behavior of motile, contaminant-degrading Pseudomonas putida G7 cells (2 × 1 μm) influenced passage through membranes with pores ranging in size from 1 μm to 12 μm. The bacteria were spontaneously retained by the membranes - even those with the largest pore size. However, the cells were mobilized through 5 μm and 12 μm pores after the application of an attractant (salicylate). Mobilization also occurred by attraction to the common root exudate constituents γ-aminobutyric acid and citrate and repellence (or negative taxis) to zero-valent iron nanoparticles. The observed pore size threshold for tactic mobilization (5 μm) and unaltered cell fluxes and effective cell diffusion against different chemoeffector strengths and concentrations suggest that there is a physical constraint on the gradient sensing mechanism at the pores that drives the tactic response. Our results indicate that chemically mediated, small-scale tactic reactions of motile bacteria may become relevant to enhance the bioaccessibility of the residual contaminants present in micrometer-sized soil pores., We would like to thank the Spanish Ministries of Economy and Competitiveness (CGL2016-77497-R) and Science and Innovation (BES-2017-079905 and PID2019-109700RB-C21) for supporting this work
- Published
- 2022