201. Contribution Factor Analysis of the Wuhan Yangtze River Bridge Deformation Using Sentinel-1A SAR Imagery and In Situ Data
- Author
-
Cheng Wang, Xinyi Li, Lv Zhou, Jie Qin, Jun Ma, Ziyan Luo, and Lilong Liu
- Subjects
SBAS-InSAR ,deformation monitoring ,Wuhan Yangtze River Bridge ,bridge deformation analysis ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Bridges play a crucial role in the development of the national economy and transportation industry, and their deformation monitoring is vital for ensuring their health. Therefore, it is necessary to conduct long-term monitoring of bridges’ deformation. This study monitored the deformation of the Wuhan Yangtze River Bridge using the SBAS-InSAR technology and Sentinel-1A data. The deformation results were analyzed in combination with bridge structure, human activity, temperature and stratigraphy. The results were as follows: (1) The vertical deformation rate of the bridge was between −15.6 and 10.7 mm/year, and part of the deformation belonged to rebound deformation; (2) The middle span deformation is the largest and the uplift and lowering alternate; (3) The reduction in human activity is the reason for the lower deformation amplitude from January to October 2020 compared to after October 2020; (4) A positive correlation between deformation and temperature was observed only along a portion of the bridge; (5) There is no direct correlation between observed lowering and stratigraphy under the bridge piers, as the sinking is presumably absorbed by the bridge structure.
- Published
- 2023
- Full Text
- View/download PDF