201. On the Regularity of Weak Solutions of the Boussinesq Equations in Besov Spaces
- Author
-
Sadek Gala, Maria Alessandra Ragusa, Michel Théra, Annamaria Barbagallo, Barbagallo, A., Gala, S., Ragusa, M. A., Thera, M., University of Naples Federico II, Dipartimento di Matematica e Informatica, Università di Catania, Università degli studi di Catania [Catania], Université de Limoges (UNILIM), and Federation University Australia Ballarat
- Subjects
Pure mathematics ,General Mathematics ,010102 general mathematics ,Context (language use) ,Regularity criterion ,Weak solution ,Extension (predicate logic) ,01 natural sciences ,Boussinesq equation ,010101 applied mathematics ,Homogeneous ,Besov space ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Nabla symbol ,0101 mathematics ,Boussinesq equations ,Mathematics - Abstract
The main issue addressed in this paper concerns an extension of a result by Z. Zhang who proved, in the context of the homogeneous Besov space $\dot {B}_{\infty ,\infty }^{-1}(\mathbb {R}^{3})$, that, if the solution of the Boussinesq equation (1) below (starting with an initial data in H2) is such that $(\nabla u,\nabla \theta )\in L^{2}(0,T;\dot {B}_{\infty ,\infty }^{-1}(\mathbb {R}^{3}))$, then the solution remains smooth forever after T. In this contribution, we prove the same result for weak solutions just by assuming the condition on the velocity u and not on the temperature 𝜃.
- Published
- 2021