In order to find the particular interaction energy between cylcloguanil and the amino acids surrounding the pocket of wild type and quadruple mutant type PfDHFR enzymes, the MP2 method with basis set 6-31G(d,p) level of calculations was performed. The obtained interaction energies found that Asp54 has the strongest interaction energy to both wild type and mutant type of - 12.439 and -11.250 kcal/mol, respectively and three amino acids; Asp54, Ile164 and Ile14 formed the H-bonding with cycloguanil drug. Importantly, the mutation at Ser108Asn was the key important of cycloguanil resistant with showing repulsive interaction energy., {"references":["P. L. Olliaro, and Y. Yuthavong, \"An overview of chemotherapeutic\ntargets for antimalarial drug discovery,\" Pharmacol. Ther., vol. 81, pp.\n91-110, 1999.","Y. Yuthavong, S. Kamchonwongpaisan, U. Leartsakulpanich and P.\nChitnumsub, \"Folate Metabolism as a Source of Molecular Targets for\nAntimalarials,\" Future Microb. vol. 1, no.1, pp. 113-125, 2006.","A. Nzila, \"Inhibitors of De-novo Folate Enzymes in Plasmodium\nfalciparum,\" Drug Discov. Today, vol. 11, pp. 936-944, 2006.","K.Militello, M. Dodge, L. Bethke and D. F. Wirth, \"Identification of\nregulatory elements in the Plasmodium falciparum genome,\" Mol.\nBiochem. Parasitol, vol. 134, pp. 75-88, 2004.","T. Dasgupta, and K. S. Anderson, \"Probing the Role of Parasite-\nSpecific, Distant Structural Regions on Communication and Catalysis in\nthe Bifunctional Thymidylate Synthase- Dihydrofolate Reductase from\nPlasmodium falciparum,\" Biochemistry, vol. 47, no. 5, pp. 1336-1345,\n2008.","A. Nzila, \"The Past, Present and Future of Antifolates in the Treatment\nof Plasmodium falciparum Infection,\" J. Antimicrob Chemother, vol. 57,\npp. 1043-1054, 2006.","R.T. Delfino, O. A. Santos-Filho and J. D. Figueroa-Villar, \"Type 2\nantifolates in the chemotherapy of falciparum malaria,\" J. Braz. Chem.\nSoc. vol. 13, pp. 727-741, 2002.","Y. Yuthavong, \"Basic for antifolate action and resistance in malaria.\nMicrobes Infect,\" vol. 4, pp. 175-182, 2002.","Y. Yuthavong, J. Yuvaniyama, P. Chitnumsub, J. Vanichtanankul, S.\nChusacultanachai, B. Tarnchompoo, T. Vilaivan and S.\nKamchonwongpaisan, \"Malarial (Plasmodium falciparum) dihydrofolate\nreductase-thymidylate synthase: structural basis for antifolate resistance\nand development of effective inhibitors,\" Parasitology, vol. 130, pp.\n249-259, 2005.\n[10] L. K. Basco, P. E. Pecoulas, C. M. Wilson, J. L. Bras and A. Mazabraud,\n\"Point mutations in the dihydrofolate reductase-thymidylate synthase\ngene and pyrimethamine and cycloguanil resistance in Plasmodium\nfalciparum,\" Mol. Biochem. Parasitol, vol. 69, pp. 135-138, 1995.\n[11] D. S. Peterson, W. K. Milhous and T. E. Wellems, \"Molecular basis of\ndifferential resistance to cycloguanil and pyrimethamine in Plasmodium\nfalciparum malaria,\" Proc. Natl. Acad. Sci. U.S.A., vol. 87, pp. 3018-\n3022, 1990.\n[12] A. Gregson, and C.V. Plowe, \"Mechanisms of Resistance of Malaria\nParasites to Antifolates,\" Pharmacol. Rev. vol. 57, pp. 117-145, 2005.\n[13] I. M. Hastings, and M. J. Donnelly, \"The impact of antimalarial drug\nresistance mutations on parasite fitness, and its implications for the\nevolution of resistance,\" Drug Resist. Updat, vol. 8, pp. 43-50, 2005.\n[14] G.Rastelli, S. Sirawaraporn, P. Sompornpisut, T. Vilaivan, S.\nKamchonwongpaisan, R. Quarrell, G. Lowe, Y. Thebtaranonth and Y.\nYuthavong, \"Interaction of pyrimethamine, cycloguanil, WR99210 and\ntheir analogues with Plasmodium falciparum dihydrofolate reductase:\nstructural basis of antifolate resistance,\" Bioorg. Med. Chem. vol. 8, pp.\n1117-1128, 2000.\n[15] W. Sirawaraporn, T. Sathitkul, R. Sirawaraporn, Y. Yuthavong and\nD.V. Santi, \"Antifolate-resistant mutants of plasmodium falciparum\ndihydrofolate reductase,\" Proc. Natl. Acad. Sci. vol. 94, pp. 1124-1129,\n1997.\n[16] J. Yuvaniyama, P. Chitnumsub, S. Kamchonwongpaisan, J.\nVanichtanankul, S. Sirawaraporn, P. Taylor, M. D. Walkinshaw and Y.\nYuthavong, \"Insights into antifolate resistance from malarial DHFR-TS\nstructures,\" Nat. Struct. Bio,. vol. 10, pp. 357-365, 2003.\n[17] G. B. Fogel, M. Cheung, E. Pittman and D. Hecht, \"Modeling the\ninhibition of quadruple mutant Plasmodium falciparum dihydrofolate\nreductase by pyrimethamine derivatives,\" J. Comput Aided Mol Des,\nvol. 22, pp. 29-38, 2008.\n[18] S. Kamchonwongpaisan, R. Quarrell, N. Charoensetakul, R. Ponsinet, T.\nVilaivan, J. Vanichtanankul, B. Tarnchompoo, W. Sirawaraporn, G.\nLowe and Y. Yuthavong, \"Inhibitors of multiple mutants of plasmodium\nfalciparum dihydrofolate reductase and their antimalarial activities,\" J.\nMed. Chem, vol. 47, pp. 673-680, 2004.\n[19] M. D. Parenti, S. Pacchioni, A. M. Ferrari, and G. Rastelli, \"Three-\nDimensional Quantitative Structure-Activity Relationship Analysis of a\nSet of Plasmodium falciparum Dihydrofolate Reductase Inhibitors Using\na Pharmacophore Generation Approach,\" J. Med. Chem, vol. 47, pp.\n4258-4267, 2004.\n[20] P. Maitarad, P. Saparpakorn, , S. Hannongbua, S. Kamchonwongpaisan,\nB. Tarnchompoo, Y. Yuthavong, \"Particular Interaction between\nPyrimethamine Derivatives and Quadruple Mutant Type Dihydrofolate\nReductase of Plasmodium falciparum: CoMFA and Quantum Chemical\nCalculations Studies,\" J. Enzyme. Inhibition and Medicinal Chemistry,\n2008, in press."]}