Liu, Fei, Qin, Yayun, Huang, Yuwen, Gao, Pan, Li, Jingzhen, Yu, Shanshan, Jia, Danna, Chen, Xiang, Lv, Yuexia, Tu, Jiayi, Sun, Kui, Han, Yunqiao, Reilly, James, Shu, Xinhua, Lu, Qunwei, Tang, Zhaohui, Xu, Chengqi, Luo, Daji, and Liu, Mugen
Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish. Author summary: Vision is mediated by two types of light-sensing cells named rod and cone photoreceptors in animal eyes. Abnormal generation, dysfunction or death of photoreceptor cells all cause irreversible vision problems. NRL is an essential gene for the generation and function of rod cells in mice and humans. Surprisingly, we found that in the zebrafish, a popular animal model for human diseases and therapeutic testing, there are two types of rod cells, and eliminating the function of nrl gene affects the rod cell formation at the embryonic stage but not at the juvenile and adult stages. The rod cell formation at the post-embryonic is driven by the mafba gene, which has not been reported to play a role in rod cells. In addition to the reduced number of rod cells, deletion of nrl also results in the emergence of rod/green-cone hybrid cells and an increased number of green cones. The ensuing cellular and molecular alterations collectively lead to retinal degeneration. These findings expand our understanding of photoreceptor development and maintenance and highlight the underlying conserved and species-specific regulatory mechanisms. [ABSTRACT FROM AUTHOR]