201. Insights into the Hormone-Regulating Mechanism of Adventitious Root Formation in Softwood Cuttings of Cyclocarya paliurus and Optimization of the Hormone-Based Formula for Promoting Rooting
- Author
-
Yuan Tian, Wanxia Yang, Shiying Wan, and Shengzuo Fang
- Subjects
wheel wingnut ,rooting parameters ,hormone signaling pathway ,structural gene expression ,transcriptome ,WGCNA ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Adventitious root (AR) formation is vital for successful cutting propagation in plants, while the dynamic regulation of phytohormones is viewed as one of the most important factors affecting AR formation. Cyclocarya paliurus, a hard-to-root plant, is faced with the bottleneck of cloning its superior varieties in practice. In this study, ten treatments were designed to figure out the best hormone-based formula for promoting AR formation in softwood cuttings and explore their hormone-regulating mechanisms. Both the rooting process and the rooting parameters of the softwood cuttings were significantly affected by different hormone-based formulas (p < 0.05), while the greatest rooting rate (93%) and root quality index were achieved in the H3 formula (SR3:IR3 = 1:1). Significant differences in the measured phytohormone concentrations, as well as in their ratios, were detected among the cuttings sampled at various AR formation stages (p < 0.05), whereas the dynamics for each phytohormone varied greatly during AR formation. The transcriptome analysis showed 12,028 differentially expressed genes (DEGs) identified during the rooting process of C. paliurus cuttings, while the KEGG enrichment analysis indicated that a total of 20 KEGG terms were significantly enriched in all the comparison samples, with 253 DEGs detected in signal transduction. Furthermore, 19 genes with vital functions in regulating the hormone signaling pathway were identified by means of a WGCNA analysis. Our results not only optimize a hormone-based formula for improving the rooting of C. paliurus cuttings but also provide an insight into the hormonal regulatory network during AR formation in softwood C. paliurus cuttings.
- Published
- 2024
- Full Text
- View/download PDF