201. Therapeutic Strategies to Attenuate Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment for Acute Ischemic Stroke.
- Author
-
Kanazawa M, Takahashi T, Nishizawa M, and Shimohata T
- Subjects
- Brain Ischemia drug therapy, Fibrinolytic Agents adverse effects, Hemorrhage chemically induced, Humans, Stroke drug therapy, Antibodies, Neutralizing therapeutic use, Brain Ischemia complications, Hemorrhage drug therapy, Stroke complications, Tissue Plasminogen Activator adverse effects
- Abstract
This review focuses on the mechanisms and emerging concepts of stroke and therapeutic strategies for attenuating hemorrhagic transformation (HT) after tissue plasminogen activator (tPA) treatment for acute ischemic stroke (AIS). The therapeutic time window for tPA treatment has been extended. However, the patients who are eligible for tPA treatment are still <5% of all patients with AIS. The risk of serious or fatal symptomatic hemorrhage increases with delayed initiation of treatment. HT is thought to be caused by 1) ischemia/reperfusion injury; 2) the toxicity of tPA itself; 3) inflammation; and/or 4) remodeling factor-mediated effects. Modulation of these pathophysiologies is the basis of direct therapeutic strategies to attenuate HT after tPA treatment. Several studies have revealed that matrix metalloproteinases and free radicals are potential therapeutic targets. In addition, we have demonstrated that the inhibition of the vascular endothelial growth factor-signaling pathway and supplemental treatment with a recombinant angiopoietin-1 protein might be a promising therapeutic strategy for attenuating HT after tPA treatment through vascular protection. Moreover, single-target therapies could be insufficient for attenuating HT after tPA treatment and improving the therapeutic outcome of patients with AIS. We recently identified progranulin, which is a growth factor and a novel target molecule with multiple therapeutic effects. Progranulin might be a therapeutic target that protects the brain through suppression of vascular remodeling (vascular protection), neuroinflammation, and/or neuronal death (neuroprotection). Clinical trials which evaluate the effects of anti-VEGF drugs or PGRN-based treatment with tPA will be might worthwhile.
- Published
- 2017
- Full Text
- View/download PDF