201. Long noncoding RNA ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 antisense RNA 1 recruits enhancer of zeste 2 polycomb repressive complex 2 subunit to promote the proliferation, migration and invasion of lung adenocarcinoma cells.
- Author
-
Liu J, Pan C, Lu R, and Zhang S
- Subjects
- Ankyrin Repeat, Cell Line, Tumor, Cell Movement genetics, Cell Proliferation genetics, GTPase-Activating Proteins, Gene Expression Regulation, Neoplastic, Humans, Pleckstrin Homology Domains, Polycomb Repressive Complex 2 genetics, Polycomb Repressive Complex 2 metabolism, RNA, Antisense genetics, Adenocarcinoma of Lung genetics, Adenocarcinoma of Lung pathology, Lung Neoplasms genetics, Lung Neoplasms pathology, MicroRNAs metabolism, RNA, Long Noncoding genetics, RNA, Long Noncoding metabolism
- Abstract
The detailed function of ARAP1-AS1, the antisense RNA of Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (ARAP1), in lung adenocarcinoma (LUAD) has not been clearly elucidated and required further investigation. Our study is committed to exploring the role of ARAP1-AS1 in LUAD. Gene expression in LUAD was measured by real-time quantitative polymerase-chain reaction (RT-qPCR). The influence of ARAP1-AS1 on LUAD cell malignant behaviors was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, Transwell invasion assay and wound healing assay. Subcellular fractionation assay detected the cellular localization of ARAP1-AS1 in LUAD. The protein levels were subjected to western blotting. RNA immunoprecipitation (RIP) and luciferase reporter assay were employed to verify the interaction between ARAP1-AS1, ARAP1 and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). Our investigation identified that ARAP1-AS1 was upregulated in LUAD cells and tissues. ARAP1-AS1 silencing repressed LUAD cell growth and migration. Furthermore, ARAP1-AS1 knockdown altered the expression of its sense mRNA, ARAP1. ARAP1-AS1 could recruit EZH2 to inhibit ARAP1 expression. Additionally, the downregulation of ARAP1 reversed ARAP1-AS1 downregulation-induced repression of cell growth and migration in LUAD. In conclusion, ARAP1-AS1 recruited EZH2 to silence ARAP1, facilitating cell proliferation, migration and invasion in LUAD. Our study demonstrated the possibility of ARAP1-AS1 to be a novel therapeutic target for LUAD. [Figure: see text].
- Published
- 2022
- Full Text
- View/download PDF