201. Fbxo25 controls Tbx5 and Nkx2-5 transcriptional activity to regulate cardiomyocyte development.
- Author
-
Jeong HS, Jung ES, Sim YJ, Kim SJ, Jang JW, Hong KS, Lee WY, Chung HM, Park KT, Jung YS, Kim CH, and Kim KS
- Subjects
- Animals, Embryonic Stem Cells, F-Box Proteins metabolism, Gene Expression Regulation, Developmental drug effects, Homeobox Protein Nkx-2.5, Homeodomain Proteins biosynthesis, Humans, Leupeptins administration & dosage, Mice, Proteasome Endopeptidase Complex drug effects, Proteasome Endopeptidase Complex genetics, Proteolysis, SKP Cullin F-Box Protein Ligases, T-Box Domain Proteins biosynthesis, Transcription Factors biosynthesis, Transcriptional Activation drug effects, Cell Differentiation genetics, F-Box Proteins genetics, Homeodomain Proteins genetics, Myocytes, Cardiac metabolism, T-Box Domain Proteins genetics, Transcription Factors genetics
- Abstract
The ubiquitin-proteasome system (UPS) plays an important role in protein quality control, cellular signalings, and cell differentiation through the regulated turnover of key transcription factors in cardiac tissue. However, the molecular mechanism underlying Fbxo25-mediated ubiquitination of cardiac transcription factors remains elusive. We report that an Fbxo25-mediated SCF ubiquitination pathway regulates the protein levels and activities of Tbx5 and Nkx2-5 based on our studies using MG132, proteasome inhibitor, and the temperature sensitive ubiquitin system in ts20 cells. Our data indicate that Fbxo25 directly interacts with Tbx5 and Nkx2-5 in vitro and in vivo. In support of our findings, a dominant-negative mutant of Fbxo25, Fbxo251-236, prevents Tbx5 degradation and increases Tbx5 transcriptional activity in a Tbx5 responsive luciferase assay. Therefore, Fbxo25 facilitates Tbx5 degradation in an SCF-dependent manner. In addition, the silencing of endogenous Fbxo25 increases Tbx5 and Nkx2-5 mRNA levels and suppresses mESC-derived cardiomyocyte differentiation. Likewise, the exogenous expression of FBXO25 downregulates NKX2-5 level in human ESC-derived cardiomyocytes. In myocardial infarction model, Fbxo25 mRNA decreases, whereas the mRNA and protein levels of Tbx5 and Nkx2-5 increase. The protein levels of Tbx5 and Nkx2-5 are regulated negatively by Fbxo25-mediated SCF ubiquitination pathway. Thus, our findings reveal a novel mechanism for regulation of SCFFbox25-dependent Nkx2-5 and Tbx5 ubiquitination in cardiac development and provide a new insight into the regulatory mechanism of Nkx2-5 and Tbx5 transcriptional activity., (Copyright © 2015 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF