Lalanne, Clément, Garivier, Aurélien, Gribonval, Rémi, Réseaux dynamiques : approche structurelle et temporelle (DANTE), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CHIA-0009,AllegroAssai,Algorithmes, Approximations, Parcimonie et Plongements pour l'IA(2019), ANR-20-CHIA-0020,SeqALO,Apprentissage séquentiel et actif pour l'optimisation(2020), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Optimisation, Connaissances pHysiques, Algorithmes et Modèles (OCKHAM), and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
International audience; The challenge of producing accurate statistics while respecting the privacy of the individuals in a sample is an important area of research. We study minimax lower bounds for classes of differentially private estimators. In particular, we show how to characterize the power of a statistical test under differential privacy in a plug-and-play fashion by solving an appropriate transport problem. With specific coupling constructions, this observation allows us to derive Le Cam-type and Fano-type inequalities not only for regular definitions of differential privacy but also for those based on Renyi divergence. We then proceed to illustrate our results on three simple, fully worked out examples. In particular, we show that the problem class has a huge importance on the provable degradation of utility due to privacy. In certain scenarios, we show that maintaining privacy results in a noticeable reduction in performance only when the level of privacy protection is very high. Conversely, for other problems, even a modest level of privacy protection can lead to a significant decrease in performance. Finally, we demonstrate that the DP-SGLD algorithm, a private convex solver, can be employed for maximum likelihood estimation with a high degree of confidence, as it provides near-optimal results with respect to both the size of the sample and the level of privacy protection. This algorithm is applicable to a broad range of parametric estimation procedures, including exponential families.