971 results on '"Mauk, B."'
Search Results
202. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves
- Author
-
Elliott, S. S., primary, Gurnett, D. A., additional, Kurth, W. S., additional, Clark, G., additional, Mauk, B. H., additional, Bolton, S. J., additional, Connerney, J. E. P., additional, and Levin, S. M., additional
- Published
- 2018
- Full Text
- View/download PDF
203. Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS)
- Author
-
Turner, D. L., Lee, J. H., Claudepierre, S. G., Fennell, J. F., Blake, J. B., Jaynes, A. N., Leonard, T., Wilder, F. D., Ergun, R. E., Baker, D. N., Cohen, I. J., Mauk, B. H., Strangeway, R. J., Hartley, D. P., Kletzing, C. A., Breuillard, H., Le Contel, O., Khotyaintsev, Yuri V., Torbert, R. B., Allen, R. C., Burch, J. L., Santolik, O., Turner, D. L., Lee, J. H., Claudepierre, S. G., Fennell, J. F., Blake, J. B., Jaynes, A. N., Leonard, T., Wilder, F. D., Ergun, R. E., Baker, D. N., Cohen, I. J., Mauk, B. H., Strangeway, R. J., Hartley, D. P., Kletzing, C. A., Breuillard, H., Le Contel, O., Khotyaintsev, Yuri V., Torbert, R. B., Allen, R. C., Burch, J. L., and Santolik, O.
- Abstract
Whistler mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L shells (5.5 < L < 8.5), magnetic local time (06: 00 < MLT < 09: 00), and magnetic latitude (-32 degrees < MLAT < -15 degrees), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLAT similar to-31 degrees). Most of the elements had "hook"-like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well-organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent, allowing for the direct calculation of k. Error estimates on calculated k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30 degrees from the direction antiparallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of k in the perpendicular plane was o
- Published
- 2017
- Full Text
- View/download PDF
204. Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm
- Author
-
Le Contel, O., Nakamura, R., Breuillard, H., Argall, M. R., Graham, Daniel B., Fischer, D., Retino, A., Berthomier, M., Pottelette, R., Mirioni, L., Chust, T., Wilder, F. D., Gershman, D. J., Varsani, A., Lindqvist, P. -A, Khotyaintsev, Yuri V., Norgren, Cecilia, Ergun, R. E., Goodrich, K. A., Burch, J. L., Torbert, R. B., Needell, J., Chutter, M., Rau, D., Dors, I., Russell, C. T., Magnes, W., Strangeway, R. J., Bromund, K. R., Wei, H. Y., Plaschke, F., Anderson, B. J., Le, G., Moore, T. E., Giles, B. L., Paterson, W. R., Pollock, C. J., Dorelli, J. C., Avanov, L. A., Saito, Y., Lavraud, B., Fuselier, S. A., Mauk, B. H., Cohen, I. J., Turner, D. L., Fennell, J. F., Leonard, T., Jaynes, A. N., Le Contel, O., Nakamura, R., Breuillard, H., Argall, M. R., Graham, Daniel B., Fischer, D., Retino, A., Berthomier, M., Pottelette, R., Mirioni, L., Chust, T., Wilder, F. D., Gershman, D. J., Varsani, A., Lindqvist, P. -A, Khotyaintsev, Yuri V., Norgren, Cecilia, Ergun, R. E., Goodrich, K. A., Burch, J. L., Torbert, R. B., Needell, J., Chutter, M., Rau, D., Dors, I., Russell, C. T., Magnes, W., Strangeway, R. J., Bromund, K. R., Wei, H. Y., Plaschke, F., Anderson, B. J., Le, G., Moore, T. E., Giles, B. L., Paterson, W. R., Pollock, C. J., Dorelli, J. C., Avanov, L. A., Saito, Y., Lavraud, B., Fuselier, S. A., Mauk, B. H., Cohen, I. J., Turner, D. L., Fennell, J. F., Leonard, T., and Jaynes, A. N.
- Abstract
We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
- Published
- 2017
- Full Text
- View/download PDF
205. Kinetic evidence of magnetic reconnection due to Kelvin-Helmholtz waves
- Author
-
Li, W., Andre, M., Khotyaintsev, Yu. V., Vaivads, A., Graham, D. B., Toledo-Redondo, S., Norgren, C., Henri, P., Wang, C., Tang, B. B., Lavraud, B., Vernisse, Y., Turner, D. L., Burch, J., Torbert, R., Magnes, W., Russell, C. T., Blake, J. B., Mauk, B., Giles, B., Pollock, C., Fennell, J., Jaynes, A., Avanov, L. A., Dorelli, J. C., Gershman, D. J., Paterson, W. R., Saito, Yoshifumi, Strangeway, R. J., 齋藤, 義文, Li, W., Andre, M., Khotyaintsev, Yu. V., Vaivads, A., Graham, D. B., Toledo-Redondo, S., Norgren, C., Henri, P., Wang, C., Tang, B. B., Lavraud, B., Vernisse, Y., Turner, D. L., Burch, J., Torbert, R., Magnes, W., Russell, C. T., Blake, J. B., Mauk, B., Giles, B., Pollock, C., Fennell, J., Jaynes, A., Avanov, L. A., Dorelli, J. C., Gershman, D. J., Paterson, W. R., Saito, Yoshifumi, Strangeway, R. J., and 齋藤, 義文
- Abstract
著者人数: 29名, Accepted: 2016-05-18
- Published
- 2017
206. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms
- Author
-
Nakamura, Rumi, Sergeev, V. A., Baumjohann, W., Plaschke, F., Magnes, W., Fischer, D., Varsani, A., Schmid, D., Nakamura, T. K. M., Russell, C. T., Strangeway, R. J., Leinweber, H. K., Le, G., Bromund, K. R., Pollock, C. J., Giles, B. L., Dorelli, J. C., Gershman, D. J., Paterson, W., Avanov, L. A., Fuselier, S. A., Genestreti, K., Burch, J. L., Torbert, R. B., Chutter, M., Argall, M. R., Anderson, B. J., Lindqvist, P.-A., Marklund, G. T., Khotyaintsev, Y. V., Mauk, B. H., Cohen, I. J., Baker, D. N., Jaynes, A. N., Ergun, R. E., Singer, H. J., Slavin, J. A, Kepko, E. L., Moore, T. E., Lavraud, B., Coffey, V., Saito, Yoshifumi, 中村, るみ, 齋藤, 義文, Nakamura, Rumi, Sergeev, V. A., Baumjohann, W., Plaschke, F., Magnes, W., Fischer, D., Varsani, A., Schmid, D., Nakamura, T. K. M., Russell, C. T., Strangeway, R. J., Leinweber, H. K., Le, G., Bromund, K. R., Pollock, C. J., Giles, B. L., Dorelli, J. C., Gershman, D. J., Paterson, W., Avanov, L. A., Fuselier, S. A., Genestreti, K., Burch, J. L., Torbert, R. B., Chutter, M., Argall, M. R., Anderson, B. J., Lindqvist, P.-A., Marklund, G. T., Khotyaintsev, Y. V., Mauk, B. H., Cohen, I. J., Baker, D. N., Jaynes, A. N., Ergun, R. E., Singer, H. J., Slavin, J. A, Kepko, E. L., Moore, T. E., Lavraud, B., Coffey, V., Saito, Yoshifumi, 中村, るみ, and 齋藤, 義文
- Abstract
著者人数: 42名, Accepted: 2016-05-03
- Published
- 2017
207. Spatial Distribution and Properties of 0.1-100 keV Electrons in Jupiter's Polar Auroral Region
- Author
-
Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., Levin, S., Louarn, P., Mauk, B. H., McComas, D. J., Paranicas, C., Reno, M., Saur, J., Szalay, J. R., Thomsen, M. F., Valek, P., Weidner, S., Wilson, R. J., Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., Levin, S., Louarn, P., Mauk, B. H., McComas, D. J., Paranicas, C., Reno, M., Saur, J., Szalay, J. R., Thomsen, M. F., Valek, P., Weidner, S., and Wilson, R. J.
- Abstract
We present observations of 0.1-100 keV electrons from Juno's Jovian Auroral Distributions Experiment Electron instrument over Jupiter's polar auroral region for periods around four Juno perijoves (PJ1, PJ3, PJ4, and PJ5). The observations reveal regions containing magnetic field aligned beams of bidirectional electrons having broad energy distributions interspersed between beams of upward electrons with narrow, peaked energy distributions, regions void of these electrons, and regions dominated by penetrating radiation. The electrons show evidence of acceleration via parallel electric fields (inverted-V structures) and via stochastic processes (bidirectional distributions). The inverted-V structures shown here were observed from similar to 1.4 to 2.9 R-J and had spatial scales of hundreds to thousands of kilometers along Juno's trajectory. The upward electron energy flux was typically greater than the downward flux, the latter ranging between similar to 0.01 and 5 mW m(-2) for two cases shown here which we estimate could produce similar to 0.1-50 kR of ultraviolet emission. Plain Language Summary We report on observations of 0.1 - 100 kilo-electron volt electrons from the Jovian Auroral Distributions Experiment Electron instrument (JADE-E) on Juno over the region where Jupiter's ultraviolet (UV) polar aurora is produced. The observations show electrons moving both towards and away from Jupiter. These electrons show both broad and narrow energy distributions, suggesting the presence of at least two different acceleration mechanisms. Regions void of these electrons and regions dominated by penetrating radiation were also identified. The energy flux of the electrons moving towards Jupiter was sufficient to produce the weaker UV polar auroral emissions observed at Jupiter but a different source of electrons, likely with higher energies, is required to account for the brighter emissions.
- Published
- 2017
208. Energetic particle signatures of magnetic field-aligned potentials over Jupiter's polar regions
- Author
-
Clark, G., Mauk, B. H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A., Bunce, E. J., Cowley, S. W. H., Mitchell, D. G., Provan, G., Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Kotsiaros, S., Kurth, W. S., Levin, S., McComas, D. J., Saur, J., Valek, P., Clark, G., Mauk, B. H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A., Bunce, E. J., Cowley, S. W. H., Mitchell, D. G., Provan, G., Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Kotsiaros, S., Kurth, W. S., Levin, S., McComas, D. J., Saur, J., and Valek, P.
- Abstract
Recent results of the first ever orbit through Jupiter's auroral region by NASA's Juno spacecraft did not show evidence of coherent acceleration in the auroral or polar region. However, in this letter, we show energetic particle data from Juno's Jupiter Energetic-particle Detector Instrument instrument during the third auroral pass that exhibits conclusive evidence of downward parallel electric fields in portions of Jupiter's polar region. The energetic particle distributions show inverted-V ion and electron structures in a downward electric current region with accelerated peaked distributions in hundreds of keV to similar to 1MeV range. The origin of these large electric potential structures is investigated and discussed within the current theoretical framework of current-voltage relationships at both Earth and Jupiter. Parallel electric fields responsible for accelerating particles to maintain the aurora/magnetospheric circuit appear to be a common phenomenon among strongly magnetized planets with conducting ionospheres; however, their origin and generation mechanisms are subjects of ongoing research.
- Published
- 2017
209. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits
- Author
-
Connerney, J. E. P., Adriani, Alberto, Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Cowley, S.W.H., Gérard, J.C., Gladstone, G. R., Grodent, D., Hospodarsky, G., Jørgensen, John Leif, Kurth, W. S., Levin, S. M., Mauk, B., McComas, D. J., Mura, A., Paranicas, C., Smith, J. E. T., Thorne, R. M., Valek, P., Waite, J., Connerney, J. E. P., Adriani, Alberto, Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Cowley, S.W.H., Gérard, J.C., Gladstone, G. R., Grodent, D., Hospodarsky, G., Jørgensen, John Leif, Kurth, W. S., Levin, S. M., Mauk, B., McComas, D. J., Mura, A., Paranicas, C., Smith, J. E. T., Thorne, R. M., Valek, P., and Waite, J.
- Abstract
The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator.
- Published
- 2017
210. Observations of Plasma Injection
- Author
-
Parks, G. K., Mauk, B., Gurgiolo, C., Lin, C. S., and Akasofu, S.-I., editor
- Published
- 1980
- Full Text
- View/download PDF
211. Examination of Energetic Electron Acceleration in the Vicinity of Earth's Dayside Magnetopause with MMS
- Author
-
Leonard, T. W., Jaynes, A. N., Baker, D. N., Zhao, H., Blake, J. B., Burch, J. L., Cohen, I., Ergun, R., Fennell, J. F., Gershman, D. J., Giles, B. L., Le Contel, Olivier, Mauk, B., Russell, C. T., Strangeway, R. J., Torbert, R. B., Turner, D. L., Wilder, F. D., Laboratoire de Physique des Plasmas (LPP), Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Astrophysics::High Energy Astrophysical Phenomena ,Physics::Space Physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; The Magnetospheic Multiscale Fly's Eye Energetic Particle Spectrometer instrument has made the first observations of energetic particle acceleration near a low-latitude dayside magnetic reconnection region at the Earth's magnetopause. The study by Jaynes et al. (2016) observed particle energization at the magnetospheric edge of a reconnection jet, concurrently with whistler-mode and broadband electrostatic waves during an event on 19 September 2015. Investigating the spatial regions and occurrence rate of these hundreds of keV electrons may provide insight into the generation of the relativistic radiation belt population. In this investigation we build a dataset of these energetic particle acceleration events in order to characterize the observations by determining the occurrence rate, production region, and associated wave activity. Additionally, we show a few events in microscopic detail and examine the intricate plasma and wave parameters to uncover the cause of such prompt and intense electron acceleration.
- Published
- 2016
212. Electron jet of asymmetric reconnection
- Author
-
Khotyaintsev, Y. V., Graham, D. B., Norgren, C., Eriksson, E., Li, W., Johlander, A., Vaivads, A., André, M., Pritchett, P. L., Retinò, Alessandro, Phan, T. D., Ergun, R. E., Goodrich, K. A., Lindqvist, P.-A., Marklund, G. T., Le Contel, Olivier, Plaschke, F., Magnes, W., Strangeway, R. J., Russell, C. T., Vaith, H., Argall, M. R., Kletzing, C. A., Nakamura, R., Torbert, R. B., Paterson, W. R., Gershman, D. J., Dorelli, J. C., Avanov, L. A., Lavraud, B., Saito, Y., Giles, B. L., Pollock, C. J., Turner, D. L., Blake, J. D., Fennell, J. F., Jaynes, A., Mauk, B. H., Burch, J. L., Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Space Physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
著者人数: 39名, Accepted: 2016-05-03, 資料番号: SA1160372000
- Published
- 2016
- Full Text
- View/download PDF
213. Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data
- Author
-
Breuillard, Hugo, Le Contel, Olivier, Retinò, Alessandro, Chasapis, A., Chust, Thomas, Mirioni, Laurent, Graham, D. B., Wilder, F. D., Cohen, I., Vaivads, A., Khotyaintsev, Y. V., Lindqvist, P.-A., Marklund, G. T., Burch, J. L., Torbert, R. B., Ergun, R. E., Goodrich, K. A., Macri, J., Needell, J., Chutter, M., Rau, D., Dors, I., Russell, C. T., Magnes, W., Strangeway, R. J., Bromund, K. R., Plaschke, F., Fischer, D., Leinweber, H. K., Anderson, B. J., Le, G., Slavin, J. A., Kepko, E. L., Baumjohann, W., Mauk, B., Fuselier, S. A., Nakamura, R., Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Space Physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160 km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (500 km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.
- Published
- 2016
- Full Text
- View/download PDF
214. Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission
- Author
-
Marty, B., Guillot, T., Coustenis, A., Achilleos, N., Alibert, Y., Asmar, S., Atkinson, D., Atreya, S., Babasides, G., Baines, K., Balint, T., Banfield, D., Barber, S., Bézard, B., Bjoraker, G. L., Blanc, M., Bolton, S., Chanover, N., Charnoz, S., Chassefière, E., Colwell, J. E., Deangelis, E., Dougherty, M., Drossart, P., Flasar, F. M., Fouchet, T., Frampton, R., Franchi, I., Gautier, D., Gurvits, L., Hueso, R., Kazeminejad, B., Krimigis, T., Jambon, A., Jones, G., Langevin, Y., Leese, M., Lellouch, E., Lunine, J., Milillo, A., Mahaffy, P., Mauk, B., Morse, A., Moreira, M., Moussas, X., Murray, C., Mueller-Wodarg, I., Owen, T. C., Pogrebenko, S., Prangé, R., Read, P., Sanchez-Lavega, A., Sarda, P., Stam, D., Tinetti, G., Zarka, P., Zarnecki, J., Schmidt, J., and Salo, H.
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Published
- 2008
- Full Text
- View/download PDF
215. The MMS Dayside Magnetic Reconnection Locations During Phase 1 and Their Relation to the Predictions of the Maximum Magnetic Shear Model
- Author
-
Trattner, K. J., primary, Burch, J. L., additional, Ergun, R., additional, Eriksson, S., additional, Fuselier, S. A., additional, Giles, B. L., additional, Gomez, R. G., additional, Grimes, E. W., additional, Lewis, W. S., additional, Mauk, B., additional, Petrinec, S. M., additional, Russell, C. T., additional, Strangeway, R. J., additional, Trenchi, L., additional, and Wilder, F. D., additional
- Published
- 2017
- Full Text
- View/download PDF
216. Multipoint Observations of Energetic Particle Injections and Substorm Activity During a Conjunction Between Magnetospheric Multiscale (MMS) and Van Allen Probes
- Author
-
Turner, D. L., primary, Fennell, J. F., additional, Blake, J. B., additional, Claudepierre, S. G., additional, Clemmons, J. H., additional, Jaynes, A. N., additional, Leonard, T., additional, Baker, D. N., additional, Cohen, I. J., additional, Gkioulidou, M., additional, Ukhorskiy, A. Y., additional, Mauk, B. H., additional, Gabrielse, C., additional, Angelopoulos, V., additional, Strangeway, R. J., additional, Kletzing, C. A., additional, Le Contel, O., additional, Spence, H. E., additional, Torbert, R. B., additional, Burch, J. L., additional, and Reeves, G. D., additional
- Published
- 2017
- Full Text
- View/download PDF
217. Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS)
- Author
-
Turner, D. L., primary, Lee, J. H., additional, Claudepierre, S. G., additional, Fennell, J. F., additional, Blake, J. B., additional, Jaynes, A. N., additional, Leonard, T., additional, Wilder, F. D., additional, Ergun, R. E., additional, Baker, D. N., additional, Cohen, I. J., additional, Mauk, B. H., additional, Strangeway, R. J., additional, Hartley, D. P., additional, Kletzing, C. A., additional, Breuillard, H., additional, Le Contel, O., additional, Khotyaintsev, Yu. V., additional, Torbert, R. B., additional, Allen, R. C., additional, Burch, J. L., additional, and Santolik, O., additional
- Published
- 2017
- Full Text
- View/download PDF
218. Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations
- Author
-
Li, W., primary, Thorne, R. M., additional, Ma, Q., additional, Zhang, X.‐J., additional, Gladstone, G. R., additional, Hue, V., additional, Valek, P. W., additional, Allegrini, F., additional, Mauk, B. H., additional, Clark, G., additional, Kurth, W. S., additional, Hospodarsky, G. B., additional, Connerney, J. E. P., additional, and Bolton, S. J., additional
- Published
- 2017
- Full Text
- View/download PDF
219. Spatial Distribution and Properties of 0.1–100 keV Electrons in Jupiter's Polar Auroral Region
- Author
-
Ebert, R. W., primary, Allegrini, F., additional, Bagenal, F., additional, Bolton, S. J., additional, Connerney, J. E. P., additional, Clark, G., additional, Gladstone, G. R., additional, Hue, V., additional, Kurth, W. S., additional, Levin, S., additional, Louarn, P., additional, Mauk, B. H., additional, McComas, D. J., additional, Paranicas, C., additional, Reno, M., additional, Saur, J., additional, Szalay, J. R., additional, Thomsen, M. F., additional, Valek, P., additional, Weidner, S., additional, and Wilson, R. J., additional
- Published
- 2017
- Full Text
- View/download PDF
220. Energetic particle signatures of magnetic field-aligned potentials over Jupiter's polar regions
- Author
-
Clark, G., primary, Mauk, B. H., additional, Haggerty, D., additional, Paranicas, C., additional, Kollmann, P., additional, Rymer, A., additional, Bunce, E. J., additional, Cowley, S. W. H., additional, Mitchell, D. G., additional, Provan, G., additional, Ebert, R. W., additional, Allegrini, F., additional, Bagenal, F., additional, Bolton, S., additional, Connerney, J., additional, Kotsiaros, S., additional, Kurth, W. S., additional, Levin, S., additional, McComas, D. J., additional, Saur, J., additional, and Valek, P., additional
- Published
- 2017
- Full Text
- View/download PDF
221. Discrete and broadband electron acceleration in Jupiter’s powerful aurora
- Author
-
Mauk, B. H., primary, Haggerty, D. K., additional, Paranicas, C., additional, Clark, G., additional, Kollmann, P., additional, Rymer, A. M., additional, Bolton, S. J., additional, Levin, S. M., additional, Adriani, A., additional, Allegrini, F., additional, Bagenal, F., additional, Bonfond, B., additional, Connerney, J. E. P., additional, Gladstone, G. R., additional, Kurth, W. S., additional, McComas, D. J., additional, and Valek, P., additional
- Published
- 2017
- Full Text
- View/download PDF
222. Energetic particle loss through the magnetopause: A combined global MHD and test‐particle study
- Author
-
Sorathia, K. A., primary, Merkin, V. G., additional, Ukhorskiy, A. Y., additional, Mauk, B. H., additional, and Sibeck, D. G., additional
- Published
- 2017
- Full Text
- View/download PDF
223. Juno‐UVS approach observations of Jupiter's auroras
- Author
-
Gladstone, G. R., primary, Versteeg, M. H., additional, Greathouse, T. K., additional, Hue, V., additional, Davis, M. W., additional, Gérard, J.‐C., additional, Grodent, D. C., additional, Bonfond, B., additional, Nichols, J. D., additional, Wilson, R. J., additional, Hospodarsky, G. B., additional, Bolton, S. J., additional, Levin, S. M., additional, Connerney, J. E. P., additional, Adriani, A., additional, Kurth, W. S., additional, Mauk, B. H., additional, Valek, P., additional, McComas, D. J., additional, Orton, G. S., additional, and Bagenal, F., additional
- Published
- 2017
- Full Text
- View/download PDF
224. Storm time empirical model of O + and O 6+ distributions in the magnetosphere
- Author
-
Allen, R. C., primary, Livi, S. A., additional, Vines, S. K., additional, Goldstein, J., additional, Cohen, I., additional, Fuselier, S. A., additional, Mauk, B. H., additional, and Spence, H. E., additional
- Published
- 2017
- Full Text
- View/download PDF
225. Electron beams and loss cones in the auroral regions of Jupiter
- Author
-
Allegrini, F., primary, Bagenal, F., additional, Bolton, S., additional, Connerney, J., additional, Clark, G., additional, Ebert, R. W., additional, Kim, T. K., additional, Kurth, W. S., additional, Levin, S., additional, Louarn, P., additional, Mauk, B., additional, McComas, D. J., additional, Pollock, C., additional, Ranquist, D., additional, Reno, M., additional, Szalay, J. R., additional, Thomsen, M. F., additional, Valek, P., additional, Weidner, S., additional, Wilson, R. J., additional, and Zink, J. L., additional
- Published
- 2017
- Full Text
- View/download PDF
226. A new view of Jupiter's auroral radio spectrum
- Author
-
Kurth, W. S., primary, Imai, M., additional, Hospodarsky, G. B., additional, Gurnett, D. A., additional, Louarn, P., additional, Valek, P., additional, Allegrini, F., additional, Connerney, J. E. P., additional, Mauk, B. H., additional, Bolton, S. J., additional, Levin, S. M., additional, Adriani, A., additional, Bagenal, F., additional, Gladstone, G. R., additional, McComas, D. J., additional, and Zarka, P., additional
- Published
- 2017
- Full Text
- View/download PDF
227. Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission
- Author
-
Haggerty, D. K., primary, Mauk, B. H., additional, Paranicas, C. P., additional, Clark, G., additional, Kollmann, P., additional, Rymer, A. M., additional, Bolton, S. J., additional, Connerney, J. E. P., additional, and Levin, S. M., additional
- Published
- 2017
- Full Text
- View/download PDF
228. Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints
- Author
-
Mura, A., primary, Adriani, A., additional, Altieri, F., additional, Connerney, J. E. P., additional, Bolton, S. J., additional, Moriconi, M. L., additional, Gérard, J.‐C., additional, Kurth, W. S., additional, Dinelli, B. M., additional, Fabiano, F., additional, Tosi, F., additional, Atreya, S. K., additional, Bagenal, F., additional, Gladstone, G. R., additional, Hansen, C., additional, Levin, S. M., additional, Mauk, B. H., additional, McComas, D. J., additional, Sindoni, G., additional, Filacchione, G., additional, Migliorini, A., additional, Grassi, D., additional, Piccioni, G., additional, Noschese, R., additional, Cicchetti, A., additional, Turrini, D., additional, Stefani, S., additional, Amoroso, M., additional, and Olivieri, A., additional
- Published
- 2017
- Full Text
- View/download PDF
229. A heavy ion and proton radiation belt inside of Jupiter's rings
- Author
-
Kollmann, P., primary, Paranicas, C., additional, Clark, G., additional, Mauk, B. H., additional, Haggerty, D. K., additional, Rymer, A. M., additional, Santos-Costa, D., additional, Connerney, J. E. P., additional, Allegrini, F., additional, Valek, P., additional, Kurth, W. S., additional, Gladstone, G. R., additional, Levin, S., additional, and Bolton, S., additional
- Published
- 2017
- Full Text
- View/download PDF
230. Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits
- Author
-
Connerney, J. E. P., primary, Adriani, A., additional, Allegrini, F., additional, Bagenal, F., additional, Bolton, S. J., additional, Bonfond, B., additional, Cowley, S. W. H., additional, Gerard, J.-C., additional, Gladstone, G. R., additional, Grodent, D., additional, Hospodarsky, G., additional, Jorgensen, J. L., additional, Kurth, W. S., additional, Levin, S. M., additional, Mauk, B., additional, McComas, D. J., additional, Mura, A., additional, Paranicas, C., additional, Smith, E. J., additional, Thorne, R. M., additional, Valek, P., additional, and Waite, J., additional
- Published
- 2017
- Full Text
- View/download PDF
231. Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams
- Author
-
Mauk, B. H., primary, Haggerty, D. K., additional, Paranicas, C., additional, Clark, G., additional, Kollmann, P., additional, Rymer, A. M., additional, Mitchell, D. G., additional, Bolton, S. J., additional, Levin, S. M., additional, Adriani, A., additional, Allegrini, F., additional, Bagenal, F., additional, Connerney, J. E. P., additional, Gladstone, G. R., additional, Kurth, W. S., additional, McComas, D. J., additional, Ranquist, D., additional, Szalay, J. R., additional, and Valek, P., additional
- Published
- 2017
- Full Text
- View/download PDF
232. Plasma waves in Jupiter's high‐latitude regions: Observations from the Juno spacecraft
- Author
-
Tetrick, S. S., primary, Gurnett, D. A., additional, Kurth, W. S., additional, Imai, M., additional, Hospodarsky, G. B., additional, Bolton, S. J., additional, Connerney, J. E. P., additional, Levin, S. M., additional, and Mauk, B. H., additional
- Published
- 2017
- Full Text
- View/download PDF
233. Electron butterfly distributions at particular magnetic latitudes observed during Juno's perijove pass
- Author
-
Ma, Q., primary, Thorne, R. M., additional, Li, W., additional, Zhang, X.‐J., additional, Mauk, B. H., additional, Paranicas, C., additional, Haggerty, D. K., additional, Kurth, W. S., additional, Connerney, J. E. P., additional, Bagenal, F., additional, and Bolton, S. J., additional
- Published
- 2017
- Full Text
- View/download PDF
234. Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region
- Author
-
Dinelli, B. M., primary, Fabiano, F., additional, Adriani, A., additional, Altieri, F., additional, Moriconi, M. L., additional, Mura, A., additional, Sindoni, G., additional, Filacchione, G., additional, Tosi, F., additional, Migliorini, A., additional, Grassi, D., additional, Piccioni, G., additional, Noschese, R., additional, Cicchetti, A., additional, Bolton, S. J., additional, Connerney, J. E. P., additional, Atreya, S. K., additional, Bagenal, F., additional, Gladstone, G. R., additional, Hansen, C. J., additional, Kurth, W. S., additional, Levin, S. M., additional, Mauk, B. H., additional, McComas, D. J., additional, Gèrard, J.‐C., additional, Turrini, D., additional, Stefani, S., additional, Amoroso, M., additional, and Olivieri, A., additional
- Published
- 2017
- Full Text
- View/download PDF
235. Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3
- Author
-
Paranicas, C., primary, Mauk, B. H., additional, Haggerty, D. K., additional, Clark, G., additional, Kollmann, P., additional, Rymer, A. M., additional, Szalay, J. R., additional, Ranquist, D., additional, Bagenal, F., additional, Levin, S. M., additional, Connerney, J. E. P., additional, and Bolton, S. J., additional
- Published
- 2017
- Full Text
- View/download PDF
236. Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora
- Author
-
Adriani, A., primary, Mura, A., additional, Moriconi, M. L., additional, Dinelli, B. M., additional, Fabiano, F., additional, Altieri, F., additional, Sindoni, G., additional, Bolton, S. J., additional, Connerney, J. E. P., additional, Atreya, S. K., additional, Bagenal, F., additional, Gérard, J.‐C. M. C., additional, Filacchione, G., additional, Tosi, F., additional, Migliorini, A., additional, Grassi, D., additional, Piccioni, G., additional, Noschese, R., additional, Cicchetti, A., additional, Gladstone, G. R., additional, Hansen, C., additional, Kurth, W. S., additional, Levin, S. M., additional, Mauk, B. H., additional, McComas, D. J., additional, Olivieri, A., additional, Turrini, D., additional, Stefani, S., additional, and Amoroso, M., additional
- Published
- 2017
- Full Text
- View/download PDF
237. Accelerated flows at Jupiter's magnetopause: Evidence for magnetic reconnection along the dawn flank
- Author
-
Ebert, R. W., primary, Allegrini, F., additional, Bagenal, F., additional, Bolton, S. J., additional, Connerney, J. E. P., additional, Clark, G., additional, DiBraccio, G. A., additional, Gershman, D. J., additional, Kurth, W. S., additional, Levin, S., additional, Louarn, P., additional, Mauk, B. H., additional, McComas, D. J., additional, Reno, M., additional, Szalay, J. R., additional, Thomsen, M. F., additional, Valek, P., additional, Weidner, S., additional, and Wilson, R. J., additional
- Published
- 2017
- Full Text
- View/download PDF
238. Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere
- Author
-
Clark, G., primary, Mauk, B. H., additional, Paranicas, C., additional, Haggerty, D., additional, Kollmann, P., additional, Rymer, A., additional, Brown, L., additional, Jaskulek, S., additional, Schlemm, C., additional, Kim, C., additional, Peachey, J., additional, LaVallee, D., additional, Allegrini, F., additional, Bagenal, F., additional, Bolton, S., additional, Connerney, J., additional, Ebert, R. W., additional, Hospodarsky, G., additional, Levin, S., additional, Kurth, W. S., additional, McComas, D. J., additional, Mitchell, D. G., additional, Ranquist, D., additional, and Valek, P., additional
- Published
- 2017
- Full Text
- View/download PDF
239. Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions
- Author
-
Moriconi, M. L., primary, Adriani, A., additional, Dinelli, B. M., additional, Fabiano, F., additional, Altieri, F., additional, Tosi, F., additional, Filacchione, G., additional, Migliorini, A., additional, Gérard, J. C., additional, Mura, A., additional, Grassi, D., additional, Sindoni, G., additional, Piccioni, G., additional, Noschese, R., additional, Cicchetti, A., additional, Bolton, S. J., additional, Connerney, J. E. P., additional, Atreya, S. K., additional, Bagenal, F., additional, Gladstone, G. R., additional, Hansen, C., additional, Kurth, W. S., additional, Levin, S. M., additional, Mauk, B. H., additional, McComas, D. J., additional, Turrini, D., additional, Stefani, S., additional, Olivieri, A., additional, and Amoroso, M., additional
- Published
- 2017
- Full Text
- View/download PDF
240. Searching for low‐altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO
- Author
-
Zhang, X.‐J., primary, Thorne, R. M., additional, Ma, Q., additional, Li, W., additional, Mauk, B. H., additional, Paranicas, C., additional, Haggerty, D. K., additional, Connerney, J. E. P., additional, and Bolton, S. J., additional
- Published
- 2017
- Full Text
- View/download PDF
241. Morphology of the UV aurorae Jupiter during Juno's first perijove observations
- Author
-
Bonfond, B., primary, Gladstone, G. R., additional, Grodent, D., additional, Greathouse, T. K., additional, Versteeg, M. H., additional, Hue, V., additional, Davis, M. W., additional, Vogt, M. F., additional, Gérard, J.‐C., additional, Radioti, A., additional, Bolton, S., additional, Levin, S. M., additional, Connerney, J. E. P., additional, Mauk, B. H., additional, Valek, P., additional, Adriani, A., additional, and Kurth, W. S., additional
- Published
- 2017
- Full Text
- View/download PDF
242. MMS observation of inverse energy dispersion in shock drift accelerated ions
- Author
-
Lee, S. H., primary, Sibeck, D. G., additional, Hwang, K.‐J., additional, Wang, Y., additional, Silveira, M. V. D., additional, Chu, C., additional, Mauk, B. H., additional, Cohen, I. J., additional, Ho, G. C., additional, Mason, G. M., additional, Gold, R. E., additional, Burch, J. L., additional, Giles, B. L., additional, Torbert, R. B., additional, Russell, C. T., additional, and Wei, H., additional
- Published
- 2017
- Full Text
- View/download PDF
243. Energy Dissipation and Transport Associated with Whistler-wave Generation during Plasma Jet Events using MMS Data
- Author
-
Breuillard, Hugo, Le Contel, Olivier, Retinò, Alessandro, Russell, C., Baumjohann, W., Mirioni, Laurent, Khotyaintsev, Y. V., Burch, J. L., Torbert, R. B., Ergun, R. E., Anderson, B. J., Needell, J., Chutter, M., Rau, D., Dors, I., Magnes, W., Strangeway, R. J., Bromund, K. R., Plaschke, F., Fischer, D., Leinweber, H. K., Kepko, L., Slavin, J. A., Pollock, C. J., Lindqvist, P. A., Marklund, G. T., Mauk, B., Fuselier, S. A., Le, G., Goodrich, K. A., Macri, J., Vaivads, A., Graham, D. B., Nakamura, R., Laboratoire de Physique des Plasmas (LPP), Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Swedish Institute of Space Physics [Uppsala] (IRF), and Royal Institute of Technology [Stockholm] (KTH )
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Astrophysics::High Energy Astrophysical Phenomena ,Physics::Space Physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; Plasma jets aka bursty bulk flows play a crucial role in Earth's magnetosphere dynamics, in particular during substorms where they can penetrate down to the geosynchronous orbit. The energy input from the solar wind is partly dissipated in jet fronts (also called dipolarization fronts) in the form of strong whistler waves that can heat and accelerate energetic electrons. The ratio of the energy transported during jets to the substorm energy consumption can reach one third or more due to kinetic-scale phenomena, that are still under debate due to instrumental limitations. The recently-launched Magnetospheric Multiscale (MMS) mission has already detected numerous plasma jet events, and evolves in a tetrahedral configuration (with an average inter- satellite distance of 160 km and unprecedent resolutions up to 16,000 samples/s) that allows to study in detail the microphysics of these phenomena. Thus in this study we employ MMS data to investigate the energy dissipated in jet fronts related to the generation of whistler waves, and the interaction of such waves with energetic electrons in the vicinity of the flow/jet braking region near the equatorial boundary between tail and inner magnetosphere. We also make use of ray tracing simulations to evaluate their propagation properties, as well as their impact on particles in the off-equatorial magnetosphere.
- Published
- 2015
244. First MMS Observations of High Time Resolution 3D Electric and Magnetic fields at the Dayside Magnetopause
- Author
-
Torbert, R. B., Burch, J. L., Russell, C. T., Magnes, W., Ergun, R. E., Lindqvist, P. A., Le Contel, Olivier, Vaith, H., Macri, J., Myers, S., Rau, D., Needell, J., King, B., Granoff, M., Chutter, M., Dors, I., Argall, M. R., Shuster, J. R., Olsson, G., Marklund, G. T., Khotyaintsev, Y. V., Eriksson, A. I., Kletzing, C., Bounds, S. R., Anderson, B. J., Baumjohann, W., Steller, M., Bromund, K. R., Le, G., Nakamura, R., Strangeway, R. J., Leinweber, H. K., Tucker, S., Westfall, J., Fischer, D., Plaschke, F., Pollock, C. J., Giles, B. L., Moore, T. E., Mauk, B., Fuselier, S. A., Royal Institute of Technology [Stockholm] (KTH ), Laboratoire de Physique des Plasmas (LPP), Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), University of New Hampshire (UNH), Swedish Institute of Space Physics [Uppsala] (IRF), Department of Physics and Astronomy [Iowa City], University of Iowa [Iowa City], Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), and University of Colorado [Boulder]
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Space Physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; The electrodynamics at the magnetopause is key to our understanding of ion and electron acceleration within reconnection regions. The Magnetospheric Multiscale (MMS) fleet of four spacecraft was launched into its Phase-1 equatorial orbit of 12 Re apogee specifically to investigate these regions at the Earth's magnetopause. In addition to a comprehensive suite of particle measurements, MMS makes very high time resolution 3D electric and magnetic field measurements of high accuracy using flux-gate, search coil, 3-axis double probe, and electron drift sensors. In September 2015, the MMS fleet will begin to encounter the dusk-side magnetopause in its initial configuration of approximately 160 km separation, allowing investigation of the spatial and temporal characteristics of important electrodynamics during reconnection. Using these field and particle measurements, we present first observations of 3D magnetic and electric fields (including their parallel component), and inferred current sheets, during active magnetopause crossings using the highest time resolution data available on MMS.
- Published
- 2015
245. Electrodynamic Context of Magnetotail and Magnetopause Dynamics Observed by Magnetospheric Multiscal
- Author
-
Anderson, B. J., Korth, H., Waters, C. L., Barnes, R. J., Samara, M., Russell, C. T., Strangeway, R. J., Plaschke, F., Magnes, W., Fischer, D., Merkin, V. G., Nakamura, R., Baumjohann, W., Torbert, R. B., Leinweber, H. K., Le, G., Bromund, K. R., Chutter, M., Slavin, J. A., Kepko, L., Le Contel, Olivier, Mauk, B., Westlake, J. H., Gjerloev, J. W., Ruohoniemi, J. M., Laboratoire de Physique des Plasmas (LPP), Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Space Physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; After successful launch and deployment on 14 March 2015, the four Magnetosphere Multiscale (MMS) spacecraft were commissioned during the first local time precession of the orbit line of apsides across the magnetotail from dawn to dusk. Prime science observations began in September 2015 when orbit apogee had moved to the dusk sector at magnetopause distances. Signatures of magnetotail dynamics were observed during payload and fleet commissioning. The electrodynamic context of the magnetotail events at MMS as well as observations at the dusk and afternoon magnetopause is assessed using correlative observations from low Earth orbit and ground-based instruments including the Active Magnetosphere and Polar Electrodynamics Response Experiment (AMPERE), SuperMAG, and SuperDARN. Substorm current onsets are prevalent in AMPERE data and are highly correlated with magnetotail injections and dipolarizations observed by MMS. To better constrain how the MMS magnetotail observations are related to global processes, we also examine the occurrence and prevalence of similar ionospheric onset signatures when MMS was at high altitudes in the magnetotail but observed no local signatures of injections or dipolarizations. For MMS magnetopause observations, we explore the relationship of magnetic reconnection signatures at MMS with the convection patterns derived from AMPERE and ionosphere observations to establish the relationship of the local MMS observations and global magnetospheric convective state.
- Published
- 2015
246. MMS observations of waves and instabilities in the separatrices and diffusion region of magnetopause reconnection
- Author
-
Graham, D. B., Khotyaintsev, Y. V., Vaivads, A., André, M., Lindqvist, P. A., Le Contel, Olivier, Ergun, R. E., Goodrich, K. A., Torbert, R. B., Russell, C., Magnes, W., Pollock, C. J., Mauk, B., Fuselier, S. A., Swedish Institute of Space Physics [Uppsala] (IRF), Royal Institute of Technology [Stockholm] (KTH ), Laboratoire de Physique des Plasmas (LPP), Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Space Physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; One of the major challenges in understanding magnetic reconnection is determining the role of processes operating at electron spatial scales within the diffusion region and separatrices. Currently, the processes operating at these scales are difficult to identify and characterize, but are crucial for enabling magnetic fields to reconnect. However, the recently launched Magnetospheric Multiscale (MMS) mission is specifically designed to investigate these electron scale processes. We use MMS data to investigate the type of electrostatic and electromagnetic instabilities present in the diffusion region and separatrices of asymmetric reconnection at the magnetopause. The waves are characterized using polarization analyses and interferometry techniques. Of particular interest are whistler waves and electrostatic solitary waves, which have a large range of observed properties. We investigate the generation mechanisms of the waves as well as their role in plasma heating and anomalous resistivity, using high time resolution wave and particle measurements.
- Published
- 2015
247. Effect of electron ambient plasmas in reconnection jets and dipolarization fronts : MMS initial results
- Author
-
Nakamura, R., Torkar, K., Andriopoulou, M., Jeszenszky, H., Plaschke, F., Baumjohann, W., Magnes, W., Fischer, D., Schmid, D., Steller, M., Nakamura, T., Scharlemann, C., Torbert, R. B., Burch, J. L., Ergun, R. E., Lindqvist, P. A., Marklund, G. T., Khotyaintsev, Y. V., Russell, C. T., Strangeway, R. J., Leinweber, H. K., Anderson, B. J., Le, G., Bromund, K. R., Fuselier, S. A., Chutter, M., Slavin, J. A., Kepko, L., Le Contel, Olivier, Pollock, C. J., Dorelli, J. C., Gershman, D. J., Mauk, B., Vaith, H., Kletzing, C., Bounds, S. R., Sigsbee, K. M., Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Alfven Laboratory, Royal Institute of Technology [Stockholm] (KTH ), Swedish Institute of Space Physics [Kiruna] (IRF), NASA Goddard Space Flight Center (GSFC), Laboratoire de Physique des Plasmas (LPP), Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Space Physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; With the successful launch of Magnetospheric Multiscale Misssion (MMS), it becomes possible to observe the dynamic signatures of magnetospheric transients with high-time resolution measurements of electromagnetic fields and plasma. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium and thereby controlling the spacecraft potential in order to enable accurate measurements also in sparse plasma environments essential to study properties of reconnection. Since the current balance around the spacecraft is maintained by contribution also from the ambient plasma, predominantly electrons, ASPOC beam current values combined with spacecraft potential data from FIELDS instruments enable to deduce the ambient electron plasma parameters . Particularly, using data from multi-spacecraft measurements with different ASPOC current levels and FIELDS data, parameters on ambient electron temperature and density can be deduced. Monitoring the environmental plasma parameters are essential to determine the accurate scales of the structure or wave length relative to plasma scales and hence to understand the physical processes. In this study we investigate the changes of the electron parameters in the transient structures such as the magnetic field disturbance forming at the front of BBF/flow bursts, called dipolarization front (DF), and reconnection jets in thin current sheets obtained by MMS mainly during the commissioning phase when the spacecraft traversed the near-Earth tail.
- Published
- 2015
248. Conversion of electromagnetic energy at plasma jet fronts
- Author
-
Khotyaintsev, Y. V., Divin, A. V., Graham, D. B., Vaivads, A., André, M., Lindqvist, P. A., Retinò, Alessandro, Le Contel, Olivier, Ergun, R. E., Goodrich, K. A., Torbert, R. B., Russell, C. T., Magnes, W., Nakamura, R., Pollock, C. J., Mauk, B., Fuselier, S. A., Swedish Institute of Space Physics [Uppsala] (IRF), Royal Institute of Technology [Stockholm] (KTH ), Laboratoire de Physique des Plasmas (LPP), Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Space Physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; We use multi-spacecraft observations by MMS and Cluster in the magnetotail and 3D PIC simulations to investigate conversion of electromagnetic energy at the front of a plasma jet. In PIC simulations the plasma jets (fast localized plasma flows) are produced by magnetic reconnection, while in observations we study bursty bulk flows (BBFs). Jet fronts are known to have a sharp increase of magnetic field (referred to as dipolarization fronts in the magnetospheric physics) as well as sharp gradients in plasma density and temperature. These sharp gradients at the front generate broadband turbulence in the lower-hybrid frequency range, which have amplitudes several times larger than the convective field, wave potential comparable to electron thermal energy, and perpendicular wavelength of the order of several electron gyro-scales. Despite the large wave amplitudes, we find only moderate dissipation due to these waves in the front reference frame, which goes into heating of electrons. We find that the major dissipation is happening in the Earth (laboratory) frame and it is related to reflection and acceleration of ions from the jet front. This dissipation operates at scales of the order several ion inertial lengths, and the primary contribution to E*J is coming from the convective electric field of the front (E=Vfront_x B) and the current flowing at the front.
- Published
- 2015
249. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms
- Author
-
Nakamura, R., Sergeev, V. A., Baumjohann, W., Plaschke, F., Magnes, W., Fischer, D., Varsani, A., Schmid, D., Nakamura, T. K. M., Russell, C. T., Strangeway, R. J., Leinweber, H. K., Le, G., Bromund, K. R., Pollock, C. J., Giles, B. L., Dorelli, J. C., Gershman, D. J., Paterson, W., Avanov, L. A., Fuselier, S. A., Genestreti, K., Burch, J. L., Torbert, R. B., Chutter, M., Argall, M. R., Anderson, B. J., Lindqvist, Per-Arne, Marklund, Göran T., Khotyaintsev, Y. V., Mauk, B. H., Cohen, I. J., Baker, D. N., Jaynes, A. N., Ergun, R. E., Singer, H. J., Slavin, J. A., Kepko, E. L., Moore, T. E., Lavraud, B., Coffey, V., Saito, Y., Nakamura, R., Sergeev, V. A., Baumjohann, W., Plaschke, F., Magnes, W., Fischer, D., Varsani, A., Schmid, D., Nakamura, T. K. M., Russell, C. T., Strangeway, R. J., Leinweber, H. K., Le, G., Bromund, K. R., Pollock, C. J., Giles, B. L., Dorelli, J. C., Gershman, D. J., Paterson, W., Avanov, L. A., Fuselier, S. A., Genestreti, K., Burch, J. L., Torbert, R. B., Chutter, M., Argall, M. R., Anderson, B. J., Lindqvist, Per-Arne, Marklund, Göran T., Khotyaintsev, Y. V., Mauk, B. H., Cohen, I. J., Baker, D. N., Jaynes, A. N., Ergun, R. E., Singer, H. J., Slavin, J. A., Kepko, E. L., Moore, T. E., Lavraud, B., Coffey, V., and Saito, Y.
- Abstract
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection., QC 20160719
- Published
- 2016
- Full Text
- View/download PDF
250. Electron-scale measurements of magnetic reconnection in space
- Author
-
Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L. -J, Moore, T. E., Ergun, R. E., Eastwood, J. P., Gershman, D. J., Cassak, P. A., Argall, M. R., Wang, S., Hesse, M., Pollock, C. J., Giles, B. L., Nakamura, R., Mauk, B. H., Fuselier, S. A., Russell, C. T., Strangeway, R. J., Drake, J. F., Shay, M. A., Khotyaintsev, Yu. V., Lindqvist, Per-Arne, Marklund, Göran, Wilder, F. D., Young, D. T., Torkar, K., Goldstein, J., Dorelli, J. C., Avanov, L. A., Oka, M., Baker, D. N., Jaynes, A. N., Goodrich, K. A., Cohen, I. J., Turner, D. L., Fennell, J. F., Blake, J. B., Clemmons, J., Goldman, M., Newman, D., Petrinec, S. M., Trattner, K. J., Lavraud, B., Reiff, P. H., Baumjohann, W., Magnes, W., Steller, M., Lewis, W., Saito, Y., Coffey, V., Chandler, M., Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L. -J, Moore, T. E., Ergun, R. E., Eastwood, J. P., Gershman, D. J., Cassak, P. A., Argall, M. R., Wang, S., Hesse, M., Pollock, C. J., Giles, B. L., Nakamura, R., Mauk, B. H., Fuselier, S. A., Russell, C. T., Strangeway, R. J., Drake, J. F., Shay, M. A., Khotyaintsev, Yu. V., Lindqvist, Per-Arne, Marklund, Göran, Wilder, F. D., Young, D. T., Torkar, K., Goldstein, J., Dorelli, J. C., Avanov, L. A., Oka, M., Baker, D. N., Jaynes, A. N., Goodrich, K. A., Cohen, I. J., Turner, D. L., Fennell, J. F., Blake, J. B., Clemmons, J., Goldman, M., Newman, D., Petrinec, S. M., Trattner, K. J., Lavraud, B., Reiff, P. H., Baumjohann, W., Magnes, W., Steller, M., Lewis, W., Saito, Y., Coffey, V., and Chandler, M.
- Abstract
Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region., QC 20160617
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.