201. Black-box inhomogeneous preconditioning for self-consistent field iterations in density functional theory
- Author
-
Michael F. Herbst, Antoine Levitt, Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), MATHematics for MatERIALS (MATHERIALS), École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), This project has received funding from the ISCD(Sorbonne Université) and from the European Research Council (ERC) under the European Union’s Horizon2020 research and innovation program (grant agreement No 810367)., European Project: 810367,EMC2(2019), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), and École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC)
- Subjects
Field (physics) ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Black box ,0103 physical sciences ,Convergence (routing) ,FOS: Mathematics ,General Materials Science ,Statistical physics ,Mathematics - Numerical Analysis ,010306 general physics ,Physics ,Condensed Matter - Materials Science ,Local density of states ,Preconditioner ,Operator (physics) ,Materials Science (cond-mat.mtrl-sci) ,Charge (physics) ,Numerical Analysis (math.NA) ,Computational Physics (physics.comp-ph) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Density functional theory ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,0210 nano-technology ,Physics - Computational Physics ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
We propose a new preconditioner based on the local density of states for computing the self-consistent problem in Kohn–Sham density functional theory. This preconditioner is inexpensive and able to cure the long-range charge sloshing known to hamper convergence in large, inhomogeneous systems such as clusters and surfaces. It is based on a parameter-free and physically motivated approximation to the independent-particle susceptibility operator, appropriate for both metals and insulators. It can be extended to semiconductors by using the macroscopic electronic dielectric constant as a parameter in the model. We test our preconditioner successfully on inhomogeneous systems containing metals, insulators, semiconductors and vacuum.
- Published
- 2020
- Full Text
- View/download PDF