201. Forward-planned, multiple-segment, tangential fields with concomitant boost in the treatment of breast cancer.
- Author
-
Mayo C, Lo YC, Fitzgerald TJ, and Urie M
- Subjects
- Breast Neoplasms diagnostic imaging, Carcinoma diagnostic imaging, Dose Fractionation, Radiation, Dose-Response Relationship, Radiation, Female, Follow-Up Studies, Humans, Imaging, Three-Dimensional, Tomography, X-Ray Computed, Treatment Outcome, Breast Neoplasms radiotherapy, Carcinoma radiotherapy, Radiotherapy Planning, Computer-Assisted methods
- Abstract
We report on the utility of forward-planned, 3-dimensional (3D), multiple-segment tangential fields for radiation treatment of patients with breast cancer. The technique accurately targets breast tissue and the tumor bed and reduces dose inhomogeneity in the target. By decreasing excess dose to the skin and lung, a concomitant boost to the tumor bed can be delivered during the initial treatment, thereby decreasing the overall treatment time by one week. More than 120 breast cancer patients have been treated with this breast conservation technique in our clinic. For each patient, a 3D treatment plan based upon breast and tumor bed volumes delineated on computed tomography (CT) was developed. Segmented tangent fields were iteratively created to reduce "hot spots" produced by traditional tangents. The tumor bed received a concomitant boost with additional conformal photon beams. The final tumor bed boost was delivered either with conformal photon beams or conventional electron beams. All patients received 45 Gy to the breast target, plus an additional 5 Gy to the surgical excision site, bringing the total dose to 50 Gy to the boost target volume in 25 fractions. The final boost to the excision site brought the total target dose to 60 Gy. With minimum follow-up of 4 months and median follow-up of 11 months, all patients have excellent cosmetic results. There has been minimal breast edema and minimal skin changes. There have been no local relapses to date. Forward planning of multi-segment fields is facilitated with 3D planning and multileaf collimation. The treatment technique offers improvement in target dose homogeneity and the ability to confidently concomitantly boost the excision site. The technique also offers the advantage for physics and therapy staff to develop familiarity with multiple segment fields, as a precursor to intensity-modulated radiation therapy (IMRT) techniques.
- Published
- 2004
- Full Text
- View/download PDF