2,218 results on '"Kraus, H."'
Search Results
202. The CRESST Dark Matter Search
- Author
-
Jochum, J., Bravin, M., Bruckmayer, M., Bucci, C., Cooper, S., Cozzini, C., DiStefano, P., Feilitzsch, F. V., Frank, T., Jagemann, T., Keeling, R., Kraus, H., Lush, J., Marchese, J., Meier, O., Meunier, P., Nagel, U., Pergolesi, D., Pröbst, F., Ramachers, Y., Schnagl, J., Seidel, W., Sergeyev, I., Stark, M., Stodolsky, L., Uchaikin, S., Wulandari, H., and Cline, David B., editor
- Published
- 2001
- Full Text
- View/download PDF
203. The CRESST Dark Matter Search
- Author
-
Seidel, W., Bruckmayer, M., Bucci, C., Cooper, S., Cozzini, C., Di Stefano, P., v. Feilitzsch, F., Frank, T., Hauff, D., Jagemann, T., Jochum, J., Keeling, R., Kraus, H., Marchese, J., Pröbst, F., Ramachers, Y., Sergeyev, I., Stark, M., Stodolsky, L., and Klapdor-Kleingrothaus, H. V., editor
- Published
- 2001
- Full Text
- View/download PDF
204. Cosmogenic production of <math><mrow><mmultiscripts><mrow><mi>Ar</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>37</mn></mrow></mmultiscripts></mrow></math> in the context of the LUX-ZEPLIN experiment
- Author
-
Aalbers, J., Akerib, D. S., Al Musalhi, A. K., Alder, F., Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Baker, A., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beattie, K., Bernard, E. P., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Bodnia, E., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chawla, A., Chen, H., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Cutter, J. E., Dahl, C. E., David, A., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gilchriese, M. G. D., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Hunt, D., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Leason, E. A., Leonard, D. S., Lesko, K. T., Levy, C., Lee, J., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Lopez Asamar, E., Lopez-Paredes, B., Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Morales Mendoza, J. D., Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., Olcina, I., Oliver-Mallory, K., Pal, S., Palladino, K. J., Palmer, J., Parveen, N., Patton, S. J., Pease, E. K., Penning, B., Pereira, G., Perry, E., Pershing, J., Piepke, A., Porzio, D., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Rushton, T., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Sinev, G., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tong, Z., Tovey, D. R., Trask, M., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, Y., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., and Yeh, M.
- Abstract
We estimate the amount of Ar37 produced in natural xenon via cosmic-ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth’s surface. We then calculate the resulting Ar37 concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of Ar37 in natural xenon is estimated to be 0.024 atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1 tonne/month, the average Ar37 activity after 10 tons are purified and transported underground is 0.058−0.090 μBq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic Ar37 will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of Ar37 should be considered when planning for future liquid-xenon-based experiments.
- Published
- 2022
205. Recoil imaging for dark matter, neutrinos, and physics beyond the Standard Model
- Author
-
Ciaran O'Hare, Loomba, D., Altenmuller, K., Alvarez-Pol, H., Amaro, F. D., Araujo, H. M., Aristizabal Sierra, D., Asaadi, J., Attie, D., Aune, S., Awe, C., Ayyad, Y., Baracchini, e, Barbeau, P., Battat, J. B. R., Bell, N. F., Biasuzzi, B., Bignell, L. J., Boehm, C., Bolognino, I., Brunbauer, F. M., Caamano, M., Cabo, C., Caratelli, D., Carmona, J. M., Castel, J. F., Cebrián, S., Cogollos, C., Collison, D., Costa, E., Dafni, T., Dastgiri, F., Deaconu, C., Romeri, V., Desch, K., Dho, G., Di Giambattista, F., Dezibánez, D., D Imperio, G., Dutta, B., Eldridge, C., Elliott, S. R., Ezeribe, A. C., Fava, A., Felkl, T., Fernández-Domnguez, B., Ferrer Ribas, E., Flothner, K. J., Froehlich, M., Galán, J., Galindo, J., Garca, F., Garca Pascual, J. A., Gelli, B. P., Ghrear, M., Giomataris, Y., Gnanvo, K., Gramellini, E., Di Cortona, G. Grilli, Hall-Wilton, R., Harton, J., Hedges, S., Higashino, S., Hill, G., Holanda, P. C., Ikeda, T., Irastorza, I. G., Jackson, P., Janssens, D., Jones, B., Kaminski, J., Katsioulas, I., Kelly, K., Kemmerich, N., Kemp, E., Korandla, H. B., Kraus, H., Lackner, A., Lane, G. J., Lewis, P. M., Lisowska, M., Luzón, G., Lynch, W. A., Maccarrone, G., Mack, K. J., Majewski, P. A., Mano, R. D. P., Margalejo, C., Markoff, D., Marley, T., Marques, D. J. G., Massarczyk, R., Mazzitelli, G., Mccabe, C., Mckie, L. J., Mclean, A. G., Mcnamara, P. C., Mei, Y., Messina, A., Mills, A. F., Mirallas, H., Miuchi, K., Monteiro, C. M. B., Mosbech, M. R., Muller, H., Natal Da Luz, H., Nakamura, K. D., Natochii, A., Neep, T., Newstead, J. L., Nikolopoulos, K., Obis, L., Oliveri, E., Orlandini, G., Ortiz de Solórzano, A., Oy, J., Papaevangelou, T., Pérez, O., Perez-Gonzalez, Y. F., Pfeiffer, D., Phan, N. S., Piacentini, S., Picatoste Olloqui, E., Pinci, D., Popescu, S., Prajapati, A., Queiroz, F. S., Raaf, J. L., Resnati, F., Ropelewski, L., Roque, R. C., Ruiz-Choliz, E., Rusu, A., Ruz, J., Samarati, J., Santos, E. M., Dos Santos, J. M. F., Sauli, F., Scharenberg, L., Schiffer, T., Schmidt, S., Scholberg, K., Schott, M., Schueler, J., Segui, L., Sekiya, H., Sengupta, D., Slavkovska, Z., Snowden-Ifft, D., Soffitta, P., Stenis, M., Spooner, N. J. C., Strigari, L., Stuchbery, A. E., Sun, X., Torelli, S., Tilly, E. G., Thomas, A. W., Thorpe, T. N., Urquijo, P., Utrobicic, A., Vahsen, S. E., Veenhof, R., Vogel, J. K., Williams, A. G., Wood, M. H., and Zettlemoyer, J.
- Subjects
Astrophysics and Astronomy ,Physics::Instrumentation and Detectors ,hep-ex ,astro-ph.CO ,hep-ph ,Detectors and Experimental Techniques ,physics.ins-det ,Particle Physics - Experiment ,Particle Physics - Phenomenology - Abstract
Recoil imaging entails the detection of spatially resolved ionization tracks generated by particle interactions. This is a highly sought-after capability in many classes of detector, with broad applications across particle and astroparticle physics. However, at low energies, where ionization signatures are small in size, recoil imaging only seems to be a practical goal for micro-pattern gas detectors. This white paper outlines the physics case for recoil imaging, and puts forward a decadal plan to advance towards the directional detection of low-energy recoils with sensitivity and resolution close to fundamental performance limits. The science case covered includes: the discovery of dark matter into the neutrino fog, directional detection of sub-MeV solar neutrinos, the precision study of coherent-elastic neutrino-nucleus scattering, the detection of solar axions, the measurement of the Migdal effect, X-ray polarimetry, and several other applied physics goals. We also outline the R&D programs necessary to test concepts that are crucial to advance detector performance towards their fundamental limit: single primary electron sensitivity with full 3D spatial resolution at the $\sim$100 micron-scale. These advancements include: the use of negative ion drift, electron counting with high-definition electronic readout, time projection chambers with optical readout, and the possibility for nuclear recoil tracking in high-density gases such as argon. We also discuss the readout and electronics systems needed to scale-up such detectors to the ton-scale and beyond.
- Published
- 2022
206. Probing spin-dependent dark matter interactions with $$^6$$ <math> <msup> <mrow></mrow> <mn>6</mn> </msup> </math> Li
- Author
-
Angloher, G., Benato, G., Bento, A., Bertoldo, E., Bertolini, A., Breier, R., Bucci, C., Canonica, L., D’Addabbo, A., Lorenzo, S., Einfalt, L., Erb, A., Feilitzsch, F., Ferreiro Iachellini, N., Fichtinger, S., Fuchs, D., Fuss, A., Garai, A., Ghete, V., Gorla, P., Gupta, S., Hauff, D., Ješkovský, M., Jochum, J., Kaznacheeva, M., Kinast, A., Kluck, H., Kraus, H., Langenkämper, A., Mancuso, M., Marini, L., Mokina, V., Nilima, A., Olmi, M., Ortmann, T., Pagliarone, C., Palušová, V., Pattavina, L., Petricca, F., Potzel, W., Povinec, P., Pröbst, F., Pucci, F., Reindl , F., Rothe, J., Schäffner, K., Schieck, J., Schmiedmayer, D., Schönert, S., Schwertner, C., Stahlberg, M., Stodolsky, L., Strandhagen, C., Strauss, R., Usherov, I., Wagner, F., Willers, M., and Zema, V.
- Abstract
CRESST is one of the most prominent direct detection experiments for dark matter particles with sub-GeV/c $$^2$$ 2 mass. One of the advantages of the CRESST experiment is the possibility to include a large variety of nuclides in the target material used to probe dark matter interactions. In this work, we discuss in particular the interactions of dark matter particles with protons and neutrons of $$^{6}$$ 6 Li. This is now possible thanks to new calculations on nuclear matrix elements of this specific isotope of Li. To show the potential of using this particular nuclide for probing dark matter interactions, we used the data collected previously by a CRESST prototype based on LiAlO $$_2$$ 2 and operated in an above ground test-facility at Max-Planck-Institut für Physik in Munich, Germany. In particular, the inclusion of $$^{6}$$ 6 Li in the limit calculation drastically improves the result obtained for spin-dependent interactions with neutrons in the whole mass range. The improvement is significant, greater than two order of magnitude for dark matter masses below 1 GeV/c $$^2$$ 2 , compared to the limit previously published with the same data.
- Published
- 2022
207. Cosmogenic production of 37 Ar in the context of the LUX-ZEPLIN experiment
- Author
-
Aalbers, J, Akerib, DS, Al Musalhi, AK, Alder, F, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Baker, A, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beattie, K, Bernard, EP, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Bodnia, E, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chawla, A, Chen, H, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, David, A, De Viveiros, L, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gilchriese, MGD, Gokhale, S, Van der Grinten, MGD, Gwilliam, CB, Hall, CR, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Hunt, D, Ignarra, CM, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Kudryavtsev, VA, Leason, EA, Leonard, DS, Lesko, KT, Levy, C, Lee, J, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, Lopez Asamar, E, Lopez-Paredes, B, Lorenzon, W, Luitz, S, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, McCarthy, ME, McKinsey, DN, McLaughlin, J, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Morales Mendoza, JD, Morrison, E, Mount, BJ, Murphy, ASJ, Naim, D, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, Olcina, I, Oliver-Mallory, K, Pal, S, Palladino, KJ, Palmer, J, Parveen, N, Patton, SJ, Pease, EK, Penning, B, Pereira, G, Perry, E, Pershing, J, Piepke, A, Porzio, D, Qie, Y, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Rushton, T, Santone, D, Sazzad, ABMR, Schnee, RW, Scovell, PR, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Sinev, G, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Stancu, I, Stevens, A, Stifter, K, Suerfu, B, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, To, WH, Tong, Z, Tovey, DR, Trask, M, Tripathi, M, Tronstad, DR, Turner, W, Utku, U, Vaitkus, A, Wang, B, Wang, Y, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Williams, M, Wolfs, FLH, Woodford, S, Woodward, D, Wright, CJ, Xia, Q, Xiang, X, Xu, J, and Yeh, M
- Subjects
hep-ex ,astro-ph.CO ,hep-ph ,astro-ph.IM - Abstract
We estimate the amount of 37 Ar produced in natural xenon via cosmic-ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth’s surface. We then calculate the resulting 37 Ar concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of 37 Ar in natural xenon is estimated to be 0.024 atoms / kg / day . Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1 tonne / month , the average 37 Ar activity after 10 tons are purified and transported underground is 0.058 − 0.090 μ Bq / kg , depending on the degree of argon removal during above-ground purification. Such cosmogenic 37 Ar will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of 37 Ar should be considered when planning for future liquid-xenon-based experiments.
- Published
- 2022
208. Recoil imaging for dark matter, neutrinos, and physics beyond the Standard Model
- Author
-
O'Hare, C. A. J., Loomba, D., Altenmüller, K., Álvarez-Pol, H., Amaro, F. D., Araújo, H. M., Sierra, D. Aristizabal, Asaadi, J., Attié, D., Aune, S., Awe, C., Ayyad, Y., Baracchini, E., Barbeau, P., Battat, J. B. R., Bell, N. F., Biasuzzi, B., Bignell, L. J., Boehm, C., Bolognino, I., Brunbauer, F. M., Caamaño, M., Cabo, C., Caratelli, D., Carmona, J. M., Castel, J. F., Cebrián, S., Cogollos, C., Collison, D., Costa, E., Dafni, T., Dastgiri, F., Deaconu, C., De Romeri, V., Desch, K., Dho, G., Di Giambattista, F., Díez-Ibáñez, D., D'Imperio, G., Dutta, B., Eldridge, C., Elliott, S. R., Ezeribe, A. C., Fava, A., Felkl, T., Fernández-Domínguez, B., Ribas, E. Ferrer, Flöthner, K. J., Froehlich, M., Galán, J., Galindo, J., García, F., Pascual, J. A. García, Gelli, B. P., Ghrear, M., Giomataris, Y., Gnanvo, K., Gramellini, E., Di Cortona, G. Grilli, Hall-Wilton, R., Harton, J., Hedges, S., Higashino, S., Hill, G., Holanda, P. C., Ikeda, T., Irastorza, I. G., Jackson, P., Janssens, D., Jones, B., Kaminski, J., Katsioulas, I., Kelly, K., Kemmerich, N., Kemp, E., Korandla, H. B., Kraus, H., Lackner, A., Lane, G. J., Lewis, P. M., Lisowska, M., Luzón, G., Lynch, W. A., Maccarrone, G., Mack, K. J., Majewski, P. A., Mano, R. D. P., Margalejo, C., Markoff, D., Marley, T., Marques, D. J. G., Massarczyk, R., Mazzitelli, G., McCabe, C., McKie, L. J., McLean, A. G., McNamara, P. C., Mei, Y., Messina, A., Mills, A. F., Mirallas, H., Miuchi, K., Monteiro, C. M. B., Mosbech, M. R., Muller, H., da Luz, H. Natal, Nakamura, K. D., Natochii, A., Neep, T., Newstead, J. L., Nikolopoulos, K., Obis, L., Oliveri, E., Orlandini, G., de Solórzano, A. Ortiz, von Oy, J., Papaevangelou, T., Pérez, O., Perez-Gonzalez, Y. F., Pfeiffer, D., Phan, N. S., Piacentini, S., Olloqui, E. Picatoste, Pinci, D., Popescu, S., Prajapati, A., Queiroz, F. S., Raaf, J. L., Resnati, F., Ropelewski, L., Roque, R. C., Ruiz-Choliz, E., Rusu, A., Ruz, J., Samarati, J., Santos, E. M., Santos, J. M. F. dos, Sauli, F., Scharenberg, L., Schiffer, T., Schmidt, S., Scholberg, K., Schott, M., Schueler, J., Segui, L., Sekiya, H., Sengupta, D., Slavkovska, Z., Snowden-Ifft, D., Soffitta, P., van Stenis, M., Spooner, N. J. C., Strigari, L., Stuchbery, A. E., Sun, X., Torelli, S., Tilly, E. G., Thomas, A. W., Thorpe, T. N., Urquijo, P., Utrobičić, A., Vahsen, S. E., Veenhof, R., Vogel, J. K., Williams, A. G., Wood, M. H., Zettlemoyer, J., O'Hare, C. A. J., Loomba, D., Altenmüller, K., Álvarez-Pol, H., Amaro, F. D., Araújo, H. M., Sierra, D. Aristizabal, Asaadi, J., Attié, D., Aune, S., Awe, C., Ayyad, Y., Baracchini, E., Barbeau, P., Battat, J. B. R., Bell, N. F., Biasuzzi, B., Bignell, L. J., Boehm, C., Bolognino, I., Brunbauer, F. M., Caamaño, M., Cabo, C., Caratelli, D., Carmona, J. M., Castel, J. F., Cebrián, S., Cogollos, C., Collison, D., Costa, E., Dafni, T., Dastgiri, F., Deaconu, C., De Romeri, V., Desch, K., Dho, G., Di Giambattista, F., Díez-Ibáñez, D., D'Imperio, G., Dutta, B., Eldridge, C., Elliott, S. R., Ezeribe, A. C., Fava, A., Felkl, T., Fernández-Domínguez, B., Ribas, E. Ferrer, Flöthner, K. J., Froehlich, M., Galán, J., Galindo, J., García, F., Pascual, J. A. García, Gelli, B. P., Ghrear, M., Giomataris, Y., Gnanvo, K., Gramellini, E., Di Cortona, G. Grilli, Hall-Wilton, R., Harton, J., Hedges, S., Higashino, S., Hill, G., Holanda, P. C., Ikeda, T., Irastorza, I. G., Jackson, P., Janssens, D., Jones, B., Kaminski, J., Katsioulas, I., Kelly, K., Kemmerich, N., Kemp, E., Korandla, H. B., Kraus, H., Lackner, A., Lane, G. J., Lewis, P. M., Lisowska, M., Luzón, G., Lynch, W. A., Maccarrone, G., Mack, K. J., Majewski, P. A., Mano, R. D. P., Margalejo, C., Markoff, D., Marley, T., Marques, D. J. G., Massarczyk, R., Mazzitelli, G., McCabe, C., McKie, L. J., McLean, A. G., McNamara, P. C., Mei, Y., Messina, A., Mills, A. F., Mirallas, H., Miuchi, K., Monteiro, C. M. B., Mosbech, M. R., Muller, H., da Luz, H. Natal, Nakamura, K. D., Natochii, A., Neep, T., Newstead, J. L., Nikolopoulos, K., Obis, L., Oliveri, E., Orlandini, G., de Solórzano, A. Ortiz, von Oy, J., Papaevangelou, T., Pérez, O., Perez-Gonzalez, Y. F., Pfeiffer, D., Phan, N. S., Piacentini, S., Olloqui, E. Picatoste, Pinci, D., Popescu, S., Prajapati, A., Queiroz, F. S., Raaf, J. L., Resnati, F., Ropelewski, L., Roque, R. C., Ruiz-Choliz, E., Rusu, A., Ruz, J., Samarati, J., Santos, E. M., Santos, J. M. F. dos, Sauli, F., Scharenberg, L., Schiffer, T., Schmidt, S., Scholberg, K., Schott, M., Schueler, J., Segui, L., Sekiya, H., Sengupta, D., Slavkovska, Z., Snowden-Ifft, D., Soffitta, P., van Stenis, M., Spooner, N. J. C., Strigari, L., Stuchbery, A. E., Sun, X., Torelli, S., Tilly, E. G., Thomas, A. W., Thorpe, T. N., Urquijo, P., Utrobičić, A., Vahsen, S. E., Veenhof, R., Vogel, J. K., Williams, A. G., Wood, M. H., and Zettlemoyer, J.
- Abstract
Recoil imaging entails the detection of spatially resolved ionization tracks generated by particle interactions. This is a highly sought-after capability in many classes of detector, with broad applications across particle and astroparticle physics. However, at low energies, where ionization signatures are small in size, recoil imaging only seems to be a practical goal for micro-pattern gas detectors. This white paper outlines the physics case for recoil imaging, and puts forward a decadal plan to advance towards the directional detection of low-energy recoils with sensitivity and resolution close to fundamental performance limits. The science case covered includes: the discovery of dark matter into the neutrino fog, directional detection of sub-MeV solar neutrinos, the precision study of coherent-elastic neutrino-nucleus scattering, the detection of solar axions, the measurement of the Migdal effect, X-ray polarimetry, and several other applied physics goals. We also outline the R&D programs necessary to test concepts that are crucial to advance detector performance towards their fundamental limit: single primary electron sensitivity with full 3D spatial resolution at the $\sim$100 micron-scale. These advancements include: the use of negative ion drift, electron counting with high-definition electronic readout, time projection chambers with optical readout, and the possibility for nuclear recoil tracking in high-density gases such as argon. We also discuss the readout and electronics systems needed to scale-up such detectors to the ton-scale and beyond., Comment: 77 pages, 20 figures. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)
- Published
- 2022
209. A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2
- Author
-
Strauss, R., Angloher, G., Bento, A., Bucci, C., Canonica, L., Erb, A., von Feilitzsch, F., Ferreiro, N., Gorla, P., Gütlein, A., Hauff, D., Jochum, J., Kiefer, M., Kluck, H., Kraus, H., Lanfranchi, J.-C., Loebell, J., Münster, A., Petricca, F., Potzel, W., Pröbst, F., Reindl, F., Roth, S., Rottler, K., Sailer, C., Schäffner, K., Schieck, J., Scholl, S., Schönert, S., Seidel, W., von Sivers, M., Stanger, M., Stodolsky, L., Strandhagen, C., Tanzke, A., Uffinger, M., Ulrich, A., Usherov, I., Wawoczny, S., Willers, M., Wüstrich, M., and Zöller, A.
- Published
- 2015
- Full Text
- View/download PDF
210. Results on low mass WIMPs using an upgraded CRESST-II detector
- Author
-
Angloher, G., Bento, A., Bucci, C., Canonica, L., Erb, A., von Feilitzsch, F., Iachellini, N. Ferreiro, Gorla, P., Gütlein, A., Hauff, D., Huff, P., Jochum, J., Kiefer, M., Kister, C., Kluck, H., Kraus, H., Lanfranchi, J.-C., Loebell, J., Münster, A., Petricca, F., Potzel, W., Pröbst, F., Reindl, F., Roth, S., Rottler, K., Sailer, C., Schäffner, K., Schieck, J., Schmaler, J., Scholl, S., Schönert, S., Seidel, W., von Sivers, M., Stodolsky, L., Strandhagen, C., Strauss, R., Tanzke, A., Uffinger, M., Ulrich, A., Usherov, I., Wawoczny, S., Willers, M., Wüstrich, M., and Zöller, A.
- Published
- 2014
- Full Text
- View/download PDF
211. Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double β decays of 134Xe
- Author
-
Akerib, DS, Al Musalhi, AK, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Bodnia, E, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, de Viveiros, L, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gokhale, S, van der Grinten, MGD, Gwilliam, CB, Hall, CR, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, gnarra, MCI, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Liao, J, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, López Asamar, E, López Paredes, B, Lorenzon, W, Luitz, S, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, McCarthy, ME, McKinsey, DN, McLaughlin, J, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Morales Mendoza, JD, Morrison, E, Mount, BJ, Murphy, ASJ, Naim, D, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, Olcina, I, Oliver-Mallory, KC, Pal, S, Palladino, KJ, Palmer, J, Patton, S, Parveen, N, Pease, EK, Penning, B, Pereira, G, Piepke, A, Qie, Y, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Santone, D, Sazzad, ABMR, Schnee, RW, Scovell, PR, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Stancu, I, Stevens, A, Stifter, K, Suerfu, B, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, To, WH, Tovey, DR, Tripathi, M, Tronstad, DR, Turner, W, Utku, U, Vaitkus, A, Wang, B, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Williams, M, Wolfs, FLH, Woodward, D, Wright, CJ, Xiang, X, Xu, J, Yeh, M, and Zarzhitsky, P
- Published
- 2021
212. Effect of recrystallisation on the radioactive contamination of CaWO 4 crystal scintillators
- Author
-
Danevich, F.A., Bailiff, I.K., Kobychev, V.V., Kraus, H., Laubenstein, M., Loaiza, P., Mikhailik, V.B., Nagorny, S.S., Nikolaiko, A.S., Nisi, S., Solsky, I.M., and Warot, G.
- Published
- 2011
- Full Text
- View/download PDF
213. Cosmic activation of Cresst’s CaWO4 crystals
- Author
-
Kluck, H, primary, Angloher, G, additional, Benato, G, additional, Bento, A, additional, Bertolini, A, additional, Breier, R, additional, Bucci, C, additional, Canonica, L, additional, Addabbo, A D’, additional, Lorenzo, S Di, additional, Einfalt, L, additional, Erb, A, additional, Feilitzsch, F v., additional, Iachellini, N Ferreiro, additional, Fichtinger, S, additional, Fuchs, D, additional, Fuss, A, additional, Garai, A, additional, Ghete, V M, additional, Gorla, P, additional, Gupta, S, additional, Hauff, D, additional, Ješkovský, M, additional, Jochum, J, additional, Kaznacheeva, M, additional, Kinast, A, additional, Kraus, H, additional, Langenkamper, A, additional, Mancuso, M, additional, Marini, L, additional, Mokina, V, additional, Nilima, A, additional, Olmi, M, additional, Ortmann, T, additional, Pagliarone, C, additional, Palušová, V, additional, Pattavina, L, additional, Petricca, F, additional, Potzel, W, additional, Povinec, P, additional, Pröbst, F, additional, Pucci, F, additional, Reindl, F, additional, Rothe, J, additional, Schäffner, K, additional, Schieck, J, additional, Schmiedmayer, D, additional, Schönert, S, additional, Schwertner, C, additional, Stahlberg, M, additional, Stodolsky, L, additional, Strandhagen, C, additional, Strauss, R, additional, Usherov, I, additional, Wagner, F, additional, Willers, M, additional, and Zema, V, additional
- Published
- 2021
- Full Text
- View/download PDF
214. Frühe Angler
- Author
-
Hartz, S. and Kraus, H.
- Published
- 2006
215. Geräusche bei der Holzverarbeitung
- Author
-
Wiechert, H.-G., Kraus, H., Heckl, Manfred, editor, and Müller, Helmut A., editor
- Published
- 1994
- Full Text
- View/download PDF
216. Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
- Author
-
The LZ Collaboration, Akerib, D. S., Musalhi, A. K. Al, Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Bodnia, E., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Hardy, C. A., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Li, J., Liao, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. López, Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., Nguyen, A., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Patton, S., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tovey, D. R., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodward, D., Wright, C. J., Xiang, X., Xu, J., Yeh, M., and Zarzhitsky, P.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Science & Technology ,Physics::Instrumentation and Detectors ,hep-ex ,Physics ,FOS: Physical sciences ,XMASS ,hep-ph ,Astronomy & Astrophysics ,High Energy Physics - Experiment ,Physics, Particles & Fields ,MODEL ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,LIMITS ,High Energy Physics - Phenomenology (hep-ph) ,SOLAR AXIONS ,SEARCH ,Physical Sciences ,DARK-MATTER ,astro-ph.CO ,NEUTRINO ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LUX-ZEPLIN (LZ) is a dark matter detector expected to obtain world-leading sensitivity to weakly interacting massive particles (WIMPs) interacting via nuclear recoils with a ~7-tonne xenon target mass. This manuscript presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axion-like particles forming the galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6t 1000d exposure and low expected rate of electron recoil backgrounds in the $, Comment: v2 updates exclusion sensitivities from single-sided to two-sided
- Published
- 2021
217. Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
- Author
-
Collaboration, TLZ, Akerib, DS, Musalhi, AKA, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, Viveiros, LD, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gokhale, S, Grinten, MGDVD, Gwilliam, CB, Hall, CR, Hardy, CA, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lesko, KT, Levy, C, Li, J, Liao, J, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, Asamar, EL, Paredes, BL, Lorenzon, W, Luitz, S, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, McCarthy, ME, McKinsey, DN, McLaughlin, J, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Mendoza, JDM, Morrison, E, Mount, BJ, Murphy, ASJ, Naim, D, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, Olcina, I, Oliver-Mallory, KC, Pal, S, Palladino, KJ, Palmer, J, Patton, S, Parveen, N, Pease, EK, Penning, B, Pereira, G, Piepke, A, Qie, Y, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Santone, D, Sazzad, ABMR, Schnee, RW, Scovell, PR, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Stancu, I, Stevens, A, Stifter, K, Suerfu, B, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, To, WH, Tovey, DR, Tripathi, M, Tronstad, DR, Turner, W, Utku, U, Vaitkus, A, Wang, B, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Williams, M, Wolfs, FLH, Woodward, D, Wright, CJ, Xiang, X, Xu, J, Yeh, M, and Zarzhitsky, P
- Subjects
Physics::Instrumentation and Detectors - Abstract
LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼7-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the
- Published
- 2021
218. On Book Collecting: The Story of My Drake Library.
- Author
-
Minnesota Univ., Minneapolis. Univ. Libraries. and Kraus, H. P.
- Abstract
The two subjects of this talk are: (1) book collecting as an avocation and (2) the author's own private collection of material on Sir Francis Drake. (NH)
- Published
- 1969
219. Ultra-fast low temperature scintillation and X-ray luminescence of CsPbCl3 crystals.
- Author
-
Mykhaylyk, V. B., Rudko, M., Kraus, H., Kapustianyk, V., Kolomiets, V., Vitoratou, N., Chornodolskyy, Y., Voloshinovskii, A. S., and Vasylechko, L.
- Abstract
Halide perovskites recently emerged as promising materials for the detection of ionising radiation. Single crystals of halide perovskites exhibit very fast and bright scintillation when cooled and may outperform the best modern scintillators at temperatures below 100 K. In this work we report on low-temperature scintillation properties of CsPbCl
3 single crystals, grown using the Bridgeman method. The temperature dependences of the luminescence and decay kinetics were studied using X-ray excitation. At low temperatures, the crystal exhibits an intense narrow-band emission at about 420 nm with very fast decay kinetics. This emission, of which a characteristic feature is the strong thermal quenching, is attributed to the radiative decays of bound and trapped excitons. The fast, middle, and slow decay time constants obtained from a fit of a sum of exponential functions to the decay curve at 10 K are 0.1, 1 and 11 ns, respectively. The scintillation light yield of CsPbCl3 at 7 K measured at excitation with α-particles from an241 Am source is estimated to be 140 ± 15% of a reference LYSO-Ce crystal and 19000 ± 2000 ph per MeV under 14 keV X-ray excitation at 10 K. It is concluded that owing to a reduced amplitude of the slow decay component, CsPbCl3 exhibits an ultra-fast scintillation response that is superior to that of other halide perovskites. The combination of sub-nanosecond response time and the encouraging light yield has the potential of establishing this material as first choice for scintillation applications that rely on prompt detector response at cryogenic temperatures. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
220. Zeeman Effect of the Carbon Acceptor in GaAs, II
- Author
-
Atzmüller, R., Dahl, M., Kraus, H., Schaack, G., Bangert, E., Schmitt, W., Cardona, Manuel, editor, Fulde, Peter, editor, von Klitzing, Klaus, editor, Queisser, Hans-Joachim, editor, Lotsch, Helmut K. V., editor, and Landwehr, Gottfried, editor
- Published
- 1992
- Full Text
- View/download PDF
221. Spatially Resolved CARS in the Study of Local Mixing of Two Liquids in a Reactor
- Author
-
Kraus, H. P., Schneider, F. W., Lotsch, H. K. V., editor, Marowsky, Gerd., editor, and Smirnov, Valery V., editor
- Published
- 1992
- Full Text
- View/download PDF
222. First results from the CRESST-III low-mass dark matter program
- Author
-
Abdelhameed, A, Angloher, G, Bauer, P, Bento, A, Bertoldo, E, Bucci, C, Canonica, L, D'Addabbo, A, Defay, X, Di Lorenzo, S, Erb, A, Feilitzsch, F, Fichtinger, S, Ferreiro Iachellini, N, Fuss, A, Gorla, P, Hauff, D, Jochum, J, Kinast, A, Kluck, H, Kraus, H, Langenkamper, A, Mancuso, M, Mokina, V, Mondragon, E, Munster, A, Olmi, M, Ortmann, T, Pagliarone, C, Pattavina, L, Petricca, F, Potzel, W, Probst, F, Reindl, F, Rothe, J, Schaffner, K, Schieck, J, Schipperges, V, Schmiedmayer, D, Schonert, S, Schwertner, C, Stahlberg, M, Stodolsky, L, Strandhagen, C, Strauss, R, Turkolu, C, Usherov, I, Willers, M, Zema, V, Abdelhameed A. H., Angloher G., Bauer P., Bento A., Bertoldo E., Bucci C., Canonica L., D'Addabbo A., Defay X., Di Lorenzo S., Erb A., Feilitzsch F. V., Fichtinger S., Ferreiro Iachellini N., Fuss A., Gorla P., Hauff D., Jochum J., Kinast A., Kluck H., Kraus H., Langenkamper A., Mancuso M., Mokina V., Mondragon E., Munster A., Olmi M., Ortmann T., Pagliarone C., Pattavina L., Petricca F., Potzel W., Probst F., Reindl F., Rothe J., Schaffner K., Schieck J., Schipperges V., Schmiedmayer D., Schonert S., Schwertner C., Stahlberg M., Stodolsky L., Strandhagen C., Strauss R., Turkolu C., Usherov I., Willers M., Zema V., Abdelhameed, A, Angloher, G, Bauer, P, Bento, A, Bertoldo, E, Bucci, C, Canonica, L, D'Addabbo, A, Defay, X, Di Lorenzo, S, Erb, A, Feilitzsch, F, Fichtinger, S, Ferreiro Iachellini, N, Fuss, A, Gorla, P, Hauff, D, Jochum, J, Kinast, A, Kluck, H, Kraus, H, Langenkamper, A, Mancuso, M, Mokina, V, Mondragon, E, Munster, A, Olmi, M, Ortmann, T, Pagliarone, C, Pattavina, L, Petricca, F, Potzel, W, Probst, F, Reindl, F, Rothe, J, Schaffner, K, Schieck, J, Schipperges, V, Schmiedmayer, D, Schonert, S, Schwertner, C, Stahlberg, M, Stodolsky, L, Strandhagen, C, Strauss, R, Turkolu, C, Usherov, I, Willers, M, Zema, V, Abdelhameed A. H., Angloher G., Bauer P., Bento A., Bertoldo E., Bucci C., Canonica L., D'Addabbo A., Defay X., Di Lorenzo S., Erb A., Feilitzsch F. V., Fichtinger S., Ferreiro Iachellini N., Fuss A., Gorla P., Hauff D., Jochum J., Kinast A., Kluck H., Kraus H., Langenkamper A., Mancuso M., Mokina V., Mondragon E., Munster A., Olmi M., Ortmann T., Pagliarone C., Pattavina L., Petricca F., Potzel W., Probst F., Reindl F., Rothe J., Schaffner K., Schieck J., Schipperges V., Schmiedmayer D., Schonert S., Schwertner C., Stahlberg M., Stodolsky L., Strandhagen C., Strauss R., Turkolu C., Usherov I., Willers M., and Zema V.
- Abstract
The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an Earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this paper we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1 eV. This result was obtained with a 23.6 g CaWO4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon (heat) signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at ∼15 mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160 MeV/c2.
- Published
- 2019
223. Geant4-based electromagnetic background model for the CRESST dark matter experiment
- Author
-
Abdelhameed, A, Angloher, G, Bauer, P, Bento, A, Bertoldo, E, Breier, R, Bucci, C, Canonica, L, D'Addabbo, A, Lorenzo, S, Erb, A, Feilitzsch, F, Iachellini, N, Fichtinger, S, Fuss, A, Gorla, P, Hauff, D, Jeskovsky, M, Jochum, J, Kaizer, J, Kinast, A, Kluck, H, Kraus, H, Langenkamper, A, Mancuso, M, Mokina, V, Mondragon, E, Olmi, M, Ortmann, T, Pagliarone, C, Palusova, V, Pattavina, L, Petricca, F, Potzel, W, Povinec, P, Probst, F, Reindl, F, Rothe, J, Schaffner, K, Schieck, J, Schipperges, V, Schmiedmayer, D, Schonert, S, Schwertner, C, Stahlberg, M, Stodolsky, L, Strandhagen, C, Strauss, R, Turkoglu, C, Usherov, I, Willers, M, Zema, V, Zeman, J, Abdelhameed A. H., Angloher G., Bauer P., Bento A., Bertoldo E., Breier R., Bucci C., Canonica L., D'Addabbo A., Lorenzo S. D., Erb A., Feilitzsch F., Iachellini N. F., Fichtinger S., Fuss A., Gorla P., Hauff D., Jeskovsky M., Jochum J., Kaizer J., Kinast A., Kluck H., Kraus H., Langenkamper A., Mancuso M., Mokina V., Mondragon E., Olmi M., Ortmann T., Pagliarone C., Palusova V., Pattavina L., Petricca F., Potzel W., Povinec P., Probst F., Reindl F., Rothe J., Schaffner K., Schieck J., Schipperges V., Schmiedmayer D., Schonert S., Schwertner C., Stahlberg M., Stodolsky L., Strandhagen C., Strauss R., Turkoglu C., Usherov I., Willers M., Zema V., Zeman J., Abdelhameed, A, Angloher, G, Bauer, P, Bento, A, Bertoldo, E, Breier, R, Bucci, C, Canonica, L, D'Addabbo, A, Lorenzo, S, Erb, A, Feilitzsch, F, Iachellini, N, Fichtinger, S, Fuss, A, Gorla, P, Hauff, D, Jeskovsky, M, Jochum, J, Kaizer, J, Kinast, A, Kluck, H, Kraus, H, Langenkamper, A, Mancuso, M, Mokina, V, Mondragon, E, Olmi, M, Ortmann, T, Pagliarone, C, Palusova, V, Pattavina, L, Petricca, F, Potzel, W, Povinec, P, Probst, F, Reindl, F, Rothe, J, Schaffner, K, Schieck, J, Schipperges, V, Schmiedmayer, D, Schonert, S, Schwertner, C, Stahlberg, M, Stodolsky, L, Strandhagen, C, Strauss, R, Turkoglu, C, Usherov, I, Willers, M, Zema, V, Zeman, J, Abdelhameed A. H., Angloher G., Bauer P., Bento A., Bertoldo E., Breier R., Bucci C., Canonica L., D'Addabbo A., Lorenzo S. D., Erb A., Feilitzsch F., Iachellini N. F., Fichtinger S., Fuss A., Gorla P., Hauff D., Jeskovsky M., Jochum J., Kaizer J., Kinast A., Kluck H., Kraus H., Langenkamper A., Mancuso M., Mokina V., Mondragon E., Olmi M., Ortmann T., Pagliarone C., Palusova V., Pattavina L., Petricca F., Potzel W., Povinec P., Probst F., Reindl F., Rothe J., Schaffner K., Schieck J., Schipperges V., Schmiedmayer D., Schonert S., Schwertner C., Stahlberg M., Stodolsky L., Strandhagen C., Strauss R., Turkoglu C., Usherov I., Willers M., Zema V., and Zeman J.
- Abstract
The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) dark matter search experiment aims for the detection of dark matter particles via elastic scattering off nuclei in CaWO 4 crystals. To understand the CRESST electromagnetic background due to the bulk contamination in the employed materials, a model based on Monte Carlo simulations was developed using the Geant4 simulation toolkit. The results of the simulation are applied to the TUM40 detector module of CRESST-II phase 2. We are able to explain up to (68±16)% of the electromagnetic background in the energy range between 1 and 40keV.
- Published
- 2019
224. First results on sub-GeV spin-dependent dark matter interactions with 7 Li
- Author
-
Abdelhameed, A, Angloher, G, Bauer, P, Bento, A, Bertoldo, E, Bucci, C, Canonica, L, D'Addabbo, A, Defay, X, Di Lorenzo, S, Erb, A, Feilitzsch, F, Iachellini, N, Fichtinger, S, Fuss, A, Gorla, P, Hauff, D, Jochum, J, Kinast, A, Kluck, H, Kraus, H, Langenkamper, A, Mancuso, M, Mokina, V, Mondragon, E, Munster, A, Olmi, M, Ortmann, T, Pagliarone, C, Pattavina, L, Petricca, F, Potzel, W, Probst, F, Reindl, F, Rothe, J, Schaffner, K, Schieck, J, Schipperges, V, Schmiedmayer, D, Schonert, S, Schwertner, C, Stahlberg, M, Stodolsky, L, Strandhagen, C, Strauss, R, Turkoglu, C, Usherov, I, Willers, M, Zema, V, Chapellier, M, Giuliani, A, Nones, C, Poda, D, Shlegel, V, Velazquez, M, Zolotarova, A, Abdelhameed A. H., Angloher G., Bauer P., Bento A., Bertoldo E., Bucci C., Canonica L., D'Addabbo A., Defay X., Di Lorenzo S., Erb A., Feilitzsch F., Iachellini N. F., Fichtinger S., Fuss A., Gorla P., Hauff D., Jochum J., Kinast A., Kluck H., Kraus H., Langenkamper A., Mancuso M., Mokina V., Mondragon E., Munster A., Olmi M., Ortmann T., Pagliarone C., Pattavina L., Petricca F., Potzel W., Probst F., Reindl F., Rothe J., Schaffner K., Schieck J., Schipperges V., Schmiedmayer D., Schonert S., Schwertner C., Stahlberg M., Stodolsky L., Strandhagen C., Strauss R., Turkoglu C., Usherov I., Willers M., Zema V., Chapellier M., Giuliani A., Nones C., Poda D. V., Shlegel V. N., Velazquez M., Zolotarova A. S., Abdelhameed, A, Angloher, G, Bauer, P, Bento, A, Bertoldo, E, Bucci, C, Canonica, L, D'Addabbo, A, Defay, X, Di Lorenzo, S, Erb, A, Feilitzsch, F, Iachellini, N, Fichtinger, S, Fuss, A, Gorla, P, Hauff, D, Jochum, J, Kinast, A, Kluck, H, Kraus, H, Langenkamper, A, Mancuso, M, Mokina, V, Mondragon, E, Munster, A, Olmi, M, Ortmann, T, Pagliarone, C, Pattavina, L, Petricca, F, Potzel, W, Probst, F, Reindl, F, Rothe, J, Schaffner, K, Schieck, J, Schipperges, V, Schmiedmayer, D, Schonert, S, Schwertner, C, Stahlberg, M, Stodolsky, L, Strandhagen, C, Strauss, R, Turkoglu, C, Usherov, I, Willers, M, Zema, V, Chapellier, M, Giuliani, A, Nones, C, Poda, D, Shlegel, V, Velazquez, M, Zolotarova, A, Abdelhameed A. H., Angloher G., Bauer P., Bento A., Bertoldo E., Bucci C., Canonica L., D'Addabbo A., Defay X., Di Lorenzo S., Erb A., Feilitzsch F., Iachellini N. F., Fichtinger S., Fuss A., Gorla P., Hauff D., Jochum J., Kinast A., Kluck H., Kraus H., Langenkamper A., Mancuso M., Mokina V., Mondragon E., Munster A., Olmi M., Ortmann T., Pagliarone C., Pattavina L., Petricca F., Potzel W., Probst F., Reindl F., Rothe J., Schaffner K., Schieck J., Schipperges V., Schmiedmayer D., Schonert S., Schwertner C., Stahlberg M., Stodolsky L., Strandhagen C., Strauss R., Turkoglu C., Usherov I., Willers M., Zema V., Chapellier M., Giuliani A., Nones C., Poda D. V., Shlegel V. N., Velazquez M., and Zolotarova A. S.
- Abstract
In this work, we want to highlight the potential of lithium as a target for spin-dependent dark matter search in cryogenic experiments, with a special focus on the low-mass region of the parameter space. We operated a prototype detector module based on a Li 2MoO 4 target crystal in an above-ground laboratory. Despite the high background environment, the detector sets a competitive limit on spin-dependent interactions of dark matter particles with protons and neutrons for masses between 0.8GeV/c2 and 1.5GeV/c2.
- Published
- 2019
225. Erratum to: Geant4-based electromagnetic background model for the CRESST dark matter experiment (The European Physical Journal C, (2019), 79, 10, (881), 10.1140/epjc/s10052-019-7385-0)
- Author
-
Abdelhameed A. H., Abdelhameed, A, Angloher, G, Bauer, P, Bento, A, Bertoldo, E, Breier, R, Bucci, C, Canonica, L, D'Addabbo, A, Lorenzo, S, Erb, A, Feilitzsch, F, Iachellini, N, Fichtinger, S, Fuss, A, Gorla, P, Hauff, D, Jeskovsky, M, Jochum, J, Kaizer, J, Kinast, A, Kluck, H, Kraus, H, Langenkamper, A, Mancuso, M, Mokina, V, Mondragon, E, Olmi, M, Ortmann, T, Pagliarone, C, Palusova, V, Pattavina, L, Petricca, F, Potzel, W, Povinec, P, Probst, F, Reindl, F, Rothe, J, Schaffner, K, Schieck, J, Schipperges, V, Schmiedmayer, D, Schonert, S, Schwertner, C, Stahlberg, M, Stodolsky, L, Strandhagen, C, Strauss, R, Turkoglu, C, Usherov, I, Willers, M, Zema, V, Zeman, J, Abdelhameed A. H., Angloher G., Bauer P., Bento A., Bertoldo E., Breier R., Bucci C., Canonica L., D'Addabbo A., Lorenzo S. D., Erb A., Feilitzsch F., Iachellini N. F., Fichtinger S., Fuss A., Gorla P., Hauff D., Jeskovsky M., Jochum J., Kaizer J., Kinast A., Kluck H., Kraus H., Langenkamper A., Mancuso M., Mokina V., Mondragon E., Olmi M., Ortmann T., Pagliarone C., Palusova V., Pattavina L., Petricca F., Potzel W., Povinec P., Probst F., Reindl F., Rothe J., Schaffner K., Schieck J., Schipperges V., Schmiedmayer D., Schonert S., Schwertner C., Stahlberg M., Stodolsky L., Strandhagen C., Strauss R., Turkoglu C., Usherov I., Willers M., Zema V., Zeman J., Abdelhameed A. H., Abdelhameed, A, Angloher, G, Bauer, P, Bento, A, Bertoldo, E, Breier, R, Bucci, C, Canonica, L, D'Addabbo, A, Lorenzo, S, Erb, A, Feilitzsch, F, Iachellini, N, Fichtinger, S, Fuss, A, Gorla, P, Hauff, D, Jeskovsky, M, Jochum, J, Kaizer, J, Kinast, A, Kluck, H, Kraus, H, Langenkamper, A, Mancuso, M, Mokina, V, Mondragon, E, Olmi, M, Ortmann, T, Pagliarone, C, Palusova, V, Pattavina, L, Petricca, F, Potzel, W, Povinec, P, Probst, F, Reindl, F, Rothe, J, Schaffner, K, Schieck, J, Schipperges, V, Schmiedmayer, D, Schonert, S, Schwertner, C, Stahlberg, M, Stodolsky, L, Strandhagen, C, Strauss, R, Turkoglu, C, Usherov, I, Willers, M, Zema, V, Zeman, J, Abdelhameed A. H., Angloher G., Bauer P., Bento A., Bertoldo E., Breier R., Bucci C., Canonica L., D'Addabbo A., Lorenzo S. D., Erb A., Feilitzsch F., Iachellini N. F., Fichtinger S., Fuss A., Gorla P., Hauff D., Jeskovsky M., Jochum J., Kaizer J., Kinast A., Kluck H., Kraus H., Langenkamper A., Mancuso M., Mokina V., Mondragon E., Olmi M., Ortmann T., Pagliarone C., Palusova V., Pattavina L., Petricca F., Potzel W., Povinec P., Probst F., Reindl F., Rothe J., Schaffner K., Schieck J., Schipperges V., Schmiedmayer D., Schonert S., Schwertner C., Stahlberg M., Stodolsky L., Strandhagen C., Strauss R., Turkoglu C., Usherov I., Willers M., Zema V., and Zeman J.
- Abstract
The original version of this article unfortunately contains mistakes.
- Published
- 2019
226. Discrimination of recoil backgrounds in scintillating calorimeters
- Author
-
Lang, R.F., Angloher, G., Bauer, M., Bavykina, I., Bento, A., Brown, A., Bucci, C., Ciemniak, C., Coppi, C., Deuter, G., von Feilitzsch, F., Hauff, D., Henry, S., Huff, P., Imber, J., Ingleby, S., Isaila, C., Jochum, J., Kiefer, M., Kimmerle, M., Kraus, H., Lanfranchi, J.-C., Malek, M., McGowan, R., Mikhailik, V.B., Pantic, E., Petricca, F., Pfister, S., Potzel, W., Pröbst, F., Roth, S., Rottler, K., Sailer, C., Schäffner, K., Schmaler, J., Scholl, S., Seidel, W., Stodolsky, L., Tolhurst, A.J.B., Usherov, I., and Westphal, W.
- Published
- 2010
- Full Text
- View/download PDF
227. Electron and gamma background in CRESST detectors
- Author
-
Lang, R.F., Angloher, G., Bauer, M., Bavykina, I., Bento, A., Brown, A., Bucci, C., Ciemniak, C., Coppi, C., Deuter, G., von Feilitzsch, F., Hauff, D., Henry, S., Huff, P., Imber, J., Ingleby, S., Isaila, C., Jochum, J., Kiefer, M., Kimmerle, M., Kraus, H., Lanfranchi, J.-C., Majorovits, B., Malek, M., McGowan, R., Mikhailik, V.B., Pantic, E., Petricca, F., Pfister, S., Potzel, W., Pröbst, F., Roth, S., Rottler, K., Sailer, C., Schäffner, K., Schmaler, J., Scholl, S., Seidel, W., Stodolsky, L., Tolhurst, A.J.B., Usherov, I., and Westphal, W.
- Published
- 2010
- Full Text
- View/download PDF
228. Feasibility study of PbWO 4 and PbMoO 4 crystal scintillators for cryogenic rare events experiments
- Author
-
Danevich, F.A., Grinyov, B.V., Henry, S., Kosmyna, M.B., Kraus, H., Krutyak, N., Kudovbenko, V.M., Mikhailik, V.B., Nagornaya, L.L., Nazarenko, B.P., Nikolaiko, A.S., Polischuk, O.G., Puzikov, V.M., Shekhovtsov, A.N., Tretyak, V.I., and Vostretsov, Yu.Ya.
- Published
- 2010
- Full Text
- View/download PDF
229. Performance of ZnSe-based scintillators at low temperatures
- Author
-
Galkin, S., primary, Rybalka, I., additional, Sidelnikova, L., additional, Voloshinovskii, A., additional, Kraus, H., additional, and Mykhaylyk, V., additional
- Published
- 2021
- Full Text
- View/download PDF
230. Scintillating and optical spectroscopy of [formula omitted] for dark matter searches
- Author
-
Luca, M., Coron, N., Dujardin, C., Kraus, H., Mikhailik, V.B., Verdier, M.-A., and Di Stefano, P.C.F.
- Published
- 2009
- Full Text
- View/download PDF
231. Production of low-background [formula omitted]-bronze for the CRESST dark-matter-search experiment
- Author
-
Majorovits, B., Kader, H., Kraus, H., Lossin, A., Pantic, E., Petricca, F., Proebst, F., and Seidel, W.
- Published
- 2009
- Full Text
- View/download PDF
232. Commissioning run of the CRESST-II dark matter search
- Author
-
Angloher, G., Bauer, M., Bavykina, I., Bento, A., Brown, A., Bucci, C., Ciemniak, C., Coppi, C., Deuter, G., von Feilitzsch, F., Hauff, D., Henry, S., Huff, P., Imber, J., Ingleby, S., Isaila, C., Jochum, J., Kiefer, M., Kimmerle, M., Kraus, H., Lanfranchi, J.-C., Lang, R.F., Majorovits, B., Malek, M., McGowan, R., Mikhailik, V.B., Pantic, E., Petricca, F., Pfister, S., Potzel, W., Pröbst, F., Rau, W., Roth, S., Rottler, K., Sailer, C., Schäffner, K., Schmaler, J., Scholl, S., Seidel, W., Stodolsky, L., Tolhurst, A.J.B., Usherov, I., and Westphal, W.
- Published
- 2009
- Full Text
- View/download PDF
233. MgWO 4–A new crystal scintillator
- Author
-
Danevich, F.A., Chernyak, D.M., Dubovik, A.M., Grinyov, B.V., Henry, S., Kraus, H., Kudovbenko, V.M., Mikhailik, V.B., Nagornaya, L.L., Podviyanuk, R.B., Polischuk, O.G., Tupitsyna, I.A., and Vostretsov, Yu.Ya.
- Published
- 2009
- Full Text
- View/download PDF
234. ZnWO 4 scintillators for cryogenic dark matter experiments
- Author
-
Kraus, H., Danevich, F.A., Henry, S., Kobychev, V.V., Mikhailik, V.B., Mokina, V.M., Nagorny, S.S., Polischuk, O.G., and Tretyak, V.I.
- Published
- 2009
- Full Text
- View/download PDF
235. VUV sensitisation of Eu 3+ emission by Tb 3+ in Ba 3Tb(PO 4) 3–Eu
- Author
-
Mikhailik, V.B. and Kraus, H.
- Published
- 2009
- Full Text
- View/download PDF
236. EIN NEUES HESIODFRAGMENT
- Author
-
Kraus, H. J., Schmidt, H., and Kranz, W.
- Published
- 1952
237. Jacob Buus, Leben und Werke. II. Die Vokalmusik
- Author
-
Kraus, H.
- Published
- 1928
- Full Text
- View/download PDF
238. Jacob Buus, Leben und Werke. (Wiener Dissertation). Sein Leben
- Author
-
Kraus, H.
- Published
- 1926
- Full Text
- View/download PDF
239. Jacob Buus, Leben und Werke. Seine Werke
- Author
-
Kraus, H.
- Published
- 1927
- Full Text
- View/download PDF
240. Das Wachstum von Einzelzellen in der Gewebekultur. Interferenzmikroskopische Untersuchungen an HeLa-Zellen
- Author
-
Sandritter, W., Schiemer, H. G., Kraus, H., and Dörrien, U.
- Published
- 1960
241. Projected sensitivities of the LUX-ZEPLIN (LZ) experiment to new physics via low-energy electron recoils
- Author
-
Collaboration, The LZ, Akerib, DS, Musalhi, AK Al, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Bodnia, E, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, Viveiros, L de, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gokhale, S, Grinten, MGD van der, Gwilliam, CB, Hall, CR, Hardy, CA, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Li, J, Liao, J, Lindote, A, Linehan, R, Lippincott, WH, and Liu, X
- Subjects
Physics::Instrumentation and Detectors ,hep-ex ,astro-ph.CO ,hep-ph - Abstract
LUX-ZEPLIN (LZ) is a dark matter detector expected to obtain world-leading sensitivity to weakly interacting massive particles (WIMPs) interacting via nuclear recoils with a ~7-tonne xenon target mass. This manuscript presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axion-like particles forming the galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6t 1000d exposure and low expected rate of electron recoil backgrounds in the $
- Published
- 2021
242. Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment
- Author
-
Akerib, DS, Akerlof, CW, Alqahtani, A, Alsum, SK, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bauer, D, Baxter, A, Bensinger, J, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Boast, KE, Boxer, B, Brás, P, Buckley, JH, Bugaev, VV, Burdin, S, Busenitz, JK, Cabrita, R, Carels, C, Carlsmith, DL, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Cottle, A, Cutter, JE, Dahl, CE, de Viveiros, L, Dobson, JEY, Druszkiewicz, E, Edberg, TK, Eriksen, SR, Fan, A, Fayer, S, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gilchriese, MGD, Gokhale, S, van der Grinten, MGD, Hall, CR, Harrison, A, Haselschwardt, SJ, Hertel, SA, Hor, JY-K, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kocher, CD, Korley, L, Korolkova, EV, Kras, J, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Li, J, Liao, J, Liao, F-T, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, R, Liu, X, and Loniewski, C
- Subjects
Particle and Plasma Physics ,hep-ex ,Molecular ,Nuclear ,physics.ins-det ,Nuclear & Particles Physics ,Atomic ,Astronomical and Space Sciences - Abstract
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data.
- Published
- 2021
243. Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals
- Author
-
Akerib, DS, Musalhi, AK Al, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Cutter, JE, Dahl, CE, Viveiros, L de, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gokhale, S, Grinten, MGD van der, Gwilliam, CB, Hall, CR, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lesko, KT, Levy, C, Li, J, Liao, J, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, Asamar, E Lopez, Paredes, B López, Lorenzon, W, and Luitz, S
- Subjects
Physics::Instrumentation and Detectors ,physics.ins-det ,astro-ph.IM - Abstract
Two-phase xenon detectors, such as that at the core of the forthcoming LZ dark matter experiment, use photomultiplier tubes to sense the primary (S1) and secondary (S2) scintillation signals resulting from particle interactions in their liquid xenon target. This paper describes a simulation study exploring two techniques to lower the energy threshold of LZ to gain sensitivity to low-mass dark matter and astrophysical neutrinos, which will be applicable to other liquid xenon detectors. The energy threshold is determined by the number of detected S1 photons; typically, these must be recorded in three or more photomultiplier channels to avoid dark count coincidences that mimic real signals. To lower this threshold: a) we take advantage of the double photoelectron emission effect, whereby a single vacuum ultraviolet photon has a $\sim20\%$ probability of ejecting two photoelectrons from a photomultiplier tube photocathode; and b) we drop the requirement of an S1 signal altogether, and use only the ionization signal, which can be detected more efficiently. For both techniques we develop signal and background models for the nominal exposure, and explore accompanying systematic effects, including the dependence on the free electron lifetime in the liquid xenon. When incorporating double photoelectron signals, we predict a factor of $\sim 4$ sensitivity improvement to the dark matter-nucleon scattering cross-section at $2.5$ GeV/c$^2$, and a factor of $\sim1.6$ increase in the solar $^8$B neutrino detection rate. Dropping the S1 requirement may allow sensitivity gains of two orders of magnitude in both cases. Finally, we apply these techniques to even lower masses by taking into account the atomic Migdal effect; this could lower the dark matter particle mass threshold to $80$ MeV/c$^2$.
- Published
- 2021
244. Projected sensitivity of the LUX-ZEPLIN (LZ) experiment to the two-neutrino and neutrinoless double beta decays of $^{134}$Xe
- Author
-
LUX-ZEPLIN, The, Collaboration, Akerib, D. S., Musalhi, A. K. Al, Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araujo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Bodnia, E., Boxer, B., Brew, C. A. J., Bras, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Liao, J., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. Lopez, Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Patton, S., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tovey, D. R., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodward, D., Wright, C. J., Xiang, X., Xu, J., Yeh, M., and Zarzhitsky, P.
- Subjects
Physics - Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double beta decay of $^{134}$Xe is presented. LZ is a 10-tonne xenon time projection chamber optimized for the detection of dark matter particles, that is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity to search for the double beta decay of $^{134}$Xe, for which xenon detectors enriched in $^{136}$Xe are less effective. For the two-neutrino decay mode, LZ is predicted to exclude values of the half-life up to 1.7$\times$10$^{24}$ years at 90% confidence level (CL), and has a three-sigma observation potential of 8.7$\times$10$^{23}$ years, approaching the predictions of nuclear models. For the neutrinoless decay mode LZ, is projected to exclude values of the half-life up to 7.3$\times$10$^{24}$ years at 90% CL., Comment: Version accepted for publication in Phys. Rev. C
- Published
- 2021
- Full Text
- View/download PDF
245. Microwave-assisted spectroscopy of vacancy-related spin centers in hexagonal SiC
- Author
-
Shang, Z., Berencen, Y., Hollenbach, M., Zhou, S., Kraus, H., Ohshima, T., and Astakhov, G.
- Subjects
local phonon energy ,Condensed Matter::Materials Science ,silicon carbide ,Physics::Atomic and Molecular Clusters ,spin centers ,photoluminescence ,Debye-Waller factor ,microwave-assisted spectroscopy - Abstract
Optically active spin centers associated with atomic-scale defects in SiC are promising candidates for quantum technology owing to their outstanding optical and spin properties. Photoluminescence as a mature optical investigating tool is widely used for the identification of spin defects and exploration of their properties. However, in the case of spectrally overlapped contributions from different types of defects, the traditional photoluminescence measurement cannot be used to separately obtain their optical and vibrational properties, such as the local phonon energy and the Debye-Waller factor. Here, we apply spin resonant microwave-assisted spectroscopy to investigate the optical and vibrational properties of silicon vacancies in 6H-SiC and divacancies in 4H- and 6H-SiC. We isolate contributions from each type of defect, investigate their local vibrational modes and obtain the Debye-Waller factor. This work proves that microwave-assisted spectroscopy is a suitable tool for the investigation of optical and vibrational properties of a large variety of spin defects.
- Published
- 2021
246. Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
- Author
-
Akerib, DS, Akerib, DS, Al Musalhi, AK, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Bodnia, E, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, De Viveiros, L, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gokhale, S, Van Der Grinten, MGD, Gwilliam, CB, Hall, CR, Hardy, CA, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Li, J, Liao, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, Akerib, DS, Akerib, DS, Al Musalhi, AK, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Bodnia, E, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, De Viveiros, L, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gokhale, S, Van Der Grinten, MGD, Gwilliam, CB, Hall, CR, Hardy, CA, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Li, J, Liao, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, and Lopes, MI
- Abstract
LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼7-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the <100 keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout.
- Published
- 2021
247. Projected sensitivities of the LUX-ZEPLIN (LZ) experiment to new physics via low-energy electron recoils
- Author
-
The LZ Collaboration, Akerib, D. S., Musalhi, A. K. Al, Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Bodnia, E., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Hardy, C. A., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Li, J., Liao, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. López, Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., Nguyen, A., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Patton, S., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tovey, D. R., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodward, D., Wright, C. J., Xiang, X., Xu, J., Yeh, M., Zarzhitsky, P., The LZ Collaboration, Akerib, D. S., Musalhi, A. K. Al, Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Bodnia, E., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Hardy, C. A., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Li, J., Liao, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. López, Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., Nguyen, A., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Patton, S., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tovey, D. R., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodward, D., Wright, C. J., Xiang, X., Xu, J., Yeh, M., and Zarzhitsky, P.
- Abstract
LUX-ZEPLIN (LZ) is a dark matter detector expected to obtain world-leading sensitivity to weakly interacting massive particles (WIMPs) interacting via nuclear recoils with a ~7-tonne xenon target mass. This manuscript presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axion-like particles forming the galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6t 1000d exposure and low expected rate of electron recoil backgrounds in the $<$100keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout., Comment: v2 updates exclusion sensitivities from single-sided to two-sided
- Published
- 2021
- Full Text
- View/download PDF
248. Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals
- Author
-
Akerib, D. S., Musalhi, A. K. Al, Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lesko, K. T., Levy, C., Li, J., Liao, J., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. López, Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodward, D., Wright, C. J., Xiang, X., Xu, J., Yeh, M., Zarzhitsky, P., Akerib, D. S., Musalhi, A. K. Al, Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lesko, K. T., Levy, C., Li, J., Liao, J., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. López, Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodward, D., Wright, C. J., Xiang, X., Xu, J., Yeh, M., and Zarzhitsky, P.
- Abstract
Two-phase xenon detectors, such as that at the core of the forthcoming LZ dark matter experiment, use photomultiplier tubes to sense the primary (S1) and secondary (S2) scintillation signals resulting from particle interactions in their liquid xenon target. This paper describes a simulation study exploring two techniques to lower the energy threshold of LZ to gain sensitivity to low-mass dark matter and astrophysical neutrinos, which will be applicable to other liquid xenon detectors. The energy threshold is determined by the number of detected S1 photons; typically, these must be recorded in three or more photomultiplier channels to avoid dark count coincidences that mimic real signals. To lower this threshold: a) we take advantage of the double photoelectron emission effect, whereby a single vacuum ultraviolet photon has a $\sim20\%$ probability of ejecting two photoelectrons from a photomultiplier tube photocathode; and b) we drop the requirement of an S1 signal altogether, and use only the ionization signal, which can be detected more efficiently. For both techniques we develop signal and background models for the nominal exposure, and explore accompanying systematic effects, including the dependence on the free electron lifetime in the liquid xenon. When incorporating double photoelectron signals, we predict a factor of $\sim 4$ sensitivity improvement to the dark matter-nucleon scattering cross-section at $2.5$ GeV/c$^2$, and a factor of $\sim1.6$ increase in the solar $^8$B neutrino detection rate. Dropping the S1 requirement may allow sensitivity gains of two orders of magnitude in both cases. Finally, we apply these techniques to even lower masses by taking into account the atomic Migdal effect; this could lower the dark matter particle mass threshold to $80$ MeV/c$^2$., Comment: 14 pages, 6 figures
- Published
- 2021
249. Scintillation studies of Bi 4Ge 3O 12 (BGO) down to a temperature of 6 K
- Author
-
Gironnet, J., Mikhailik, V.B., Kraus, H., de Marcillac, P., and Coron, N.
- Published
- 2008
- Full Text
- View/download PDF
250. SOME ASPECTS OF OPTIMUM DESIGN OF ELECTROMAGNETIC DEVICES
- Author
-
SIKORA, J., KWIATKOWSKI, W., and KRAUS, H.
- Published
- 1993
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.