201. Graphene quantum dot nanocomposites: electroanalytical and optical sensor technology perspective.
- Author
-
Ja'farawy, Muhammad Shalahuddin Al, Thirumalai, Dinakaran, Lee, Jaewon, Jung, Ho Sang, Chang, Seung-Cheol, Yoon, Jang-Hee, and Kim, Dong-Ho
- Subjects
OPTICAL sensors ,NANOCOMPOSITE materials ,GRAPHENE ,ELECTRON mobility ,NEURODEGENERATION - Abstract
Electroanalytical and optical techniques are widely used in the development of nanomaterials-based sensor platforms. These techniques have a quick response, high sensitivity, and selectivity. Electroanalytical and optical techniques are widely used in the development of nanomaterial-based sensor platforms. These sensors must be able to detect biomarkers, pathogens, toxins, and pharmaceuticals in biological matrices associated with cardiovascular disease, cancer, and neurodegenerative diseases. Considering these pathophysiologies, numerous investigations have been undertaken to develop sensors for early diagnosis and treatment, utilizing nanomaterials such as quantum dots. Graphene quantum dots (GQDs), which are ideally nanometer-sized graphene fragments, have recently received increased attention due to their excellent physicochemical properties such as fast electron mobility, photostability, water solubility, biocompatibility, high specific surface area, and nontoxicity. Apart from the properties mentioned above, GQDs provide π–π interactions, electrostatic, and covalent interactions with an analyte, and ease of synthesis as well as the ability to combine with other nanomaterials, which have enabled their use in various sensing platforms. This review summarizes recent advances in GQDs-based nanocomposites for sensor applications, with a focus on electroanalytical and optical techniques, as well as current challenges and future prospects. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF