201. Impact of moderate aerobic exercise on small-world topology and characteristics of brain networks after sport-related concussion: an exploratory study
- Author
-
Jessica Coenen, Michael Strohm, and Claus Reinsberger
- Subjects
Sports injury ,Concussion ,Small-world topology ,Graph theory ,Resting-state EEG ,Medicine ,Science - Abstract
Abstract Sport-related concussion (SRC) is a complex brain injury. By applying graph-theoretical analysis to networks derived from neuroimaging techniques, studies have shown that despite an overall retention of small-world topology, changes in small-world properties occur after brain injury. Less is known about how exercise during athletes’ return to sport (RTS) influences these brain network properties. Therefore, in the present study dense electroencephalography (EEG) datasets were collected pre- and post-moderate aerobic exercise. Small-world properties of whole brain (WB) and the default mode network (DMN) were extracted from the EEG datasets of 21 concussed athletes and 21 healthy matched controls. More specifically, path length (LP), clustering coefficient (CP), and small-world index (SWI) in binary and weighted graphs were calculated in the alpha frequency band (7–13 Hz). Pre-exercise, SRC athletes had higher DMN-CP values compared to controls, while post-exercise SRC athletes had higher WB-LP compared to controls. Weighted WB analysis revealed a significant association between SRC and the absence of small-world topology (SWI ≤ 1) post-exercise. This explorative study provides preliminary evidence that moderate aerobic exercise during athletes’ RTS induces an altered network response. Furthermore, this altered response may be related to the clinical characteristics of the SRC athlete.
- Published
- 2024
- Full Text
- View/download PDF