201. SlKIX8 and SlKIX9 are negative regulators of leaf and fruit growth in tomato.
- Author
-
Swinnen G, Mauxion JP, Baekelandt A, De Clercq R, Van Doorsselaere J, Inzé D, Gonzalez N, Goossens A, and Pauwels L
- Subjects
- Crops, Agricultural genetics, Crops, Agricultural growth & development, Gene Expression Regulation, Plant, Genes, Plant, Phenotype, Fruit genetics, Fruit growth & development, Solanum lycopersicum genetics, Solanum lycopersicum growth & development, Plant Growth Regulators genetics, Plant Leaves genetics, Plant Leaves growth & development
- Abstract
Plant organ size and shape are major agronomic traits that depend on cell division and expansion, which are both regulated by complex gene networks. In several eudicot species belonging to the rosid clade, organ growth is controlled by a repressor complex consisting of PEAPOD (PPD) and KINASE-INDUCIBLE DOMAIN INTERACTING (KIX) proteins. The role of these proteins in asterids, which together with the rosids constitute most of the core eudicot species, is unknown. We used Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 genome editing to target SlKIX8 and SlKIX9 in the asterid model species tomato (Solanum lycopersicum) and analyzed loss-of-function phenotypes. Loss-of-function of SlKIX8 and SlKIX9 led to the production of enlarged, dome-shaped leaves and these leaves exhibited increased expression of putative Solanum lycopersicum PPD (SlPPD target genes. Unexpectedly, kix8 kix9 mutants carried enlarged fruits with increased pericarp thickness due to cell expansion. At the molecular level, protein interaction assays indicated that SlKIX8 and SlKIX9 act as adaptors between the SlPPD and SlTOPLESS co-repressor proteins. Our results show that KIX8 and KIX9 are regulators of organ growth in asterids and can be used in strategies to improve important traits in produce such as thickness of the fruit flesh., (© American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF