804 results on '"Friedlingstein, P"'
Search Results
202. Supplementary material to "The carbon cycle in Mexico: past, present and future of C stocks and fluxes"
- Author
-
Murray-Tortarolo, G., primary, Friedlingstein, P., additional, Sitch, S., additional, Jaramillo, V. J., additional, Murguía-Flores, F., additional, Anav, A., additional, Liu, Y., additional, Arneth, A., additional, Arvanitis, A., additional, Harper, A., additional, Jain, A., additional, Kato, E., additional, Koven, C., additional, Poulter, B., additional, Stocker, B. D., additional, Wiltshire, A., additional, Zaehle, S., additional, and Zeng, N., additional
- Published
- 2015
- Full Text
- View/download PDF
203. Impact of model developments on present and future simulations of permafrost in a global land-surface model
- Author
-
Chadburn, S. E., primary, Burke, E. J., additional, Essery, R. L. H., additional, Boike, J., additional, Langer, M., additional, Heikenfeld, M., additional, Cox, P. M., additional, and Friedlingstein, P., additional
- Published
- 2015
- Full Text
- View/download PDF
204. Benchmarking coupled climate-carbon models against long-term atmospheric CO 2 measurements
- Author
-
Cadule, P., Friedlingstein, P., Bopp, L., Sitch, S., Jones, C., Ciais, P., Piao, S., Peylin, P., Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), University of Exeter, School of Geography [Leeds], University of Leeds, Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), College of Urban and Environmental Sciences [Beijing], Peking University [Beijing], Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; [1] We evaluated three global models of the coupled carbon-climate system against atmospheric CO 2 concentration measured at a network of stations. These three models, HadCM3LC, IPSL-CM2-C, and IPSL-CM4-LOOP, participated in the C 4 MIP experiment and in various other simulations of the future climate impacts on the land and ocean carbon cycle. A new set of performance metrics is defined and applied to quantify each model's ability to reproduce the global growth rate, the seasonal cycle, the El Niño-Southern Oscillation (ENSO)-forced interannual variability of atmospheric CO 2 , and the sensitivity to climatic variations. Knowing that the uncertainty on the amplitude, in 2100, of the climate-carbon feedback is mainly due to the uncertainty of the response of the terrestrial biosphere to the climate change, our new metrics primarily target the evaluation of the land parameterization of the carbon cycle. The modeled fluxes are prescribed to the same global atmospheric transport model LMDZ4, and the simulated concentrations are compared to available observations. We found that the IPSL-CM4-LOOP model is best able to reproduce the phase and amplitude of the atmospheric CO 2 seasonal cycle in the Northern Hemisphere, while the other two models generally underestimate the seasonal amplitude. This points to some shortcomings in describing the vegetation phenology and heterotropic respiration response to climate. We also found that IPSL-CM2-C produces a climate-driven abnormal source of CO 2 to the atmosphere in response to El Niño anomalies. Here a good model performance rests upon a realistic simulation of ENSO-type climate variability and the subsequent tropical carbon cycle response. The three climate models underestimate the sea surface temperature warm anomaly during an El Niño, but HadCM3LC does best in reproducing the interannual CO 2 variability. More efforts are needed to further develop metrics for assessing the sensitivity of the carbon cycle to climate change, and this work should now be extended to assess ocean carbon models against observations.
- Published
- 2010
- Full Text
- View/download PDF
205. An improved representation of physical permafrost dynamics in the JULES land-surface model
- Author
-
Chadburn, S., primary, Burke, E., additional, Essery, R., additional, Boike, J., additional, Langer, M., additional, Heikenfeld, M., additional, Cox, P., additional, and Friedlingstein, P., additional
- Published
- 2015
- Full Text
- View/download PDF
206. Water-use efficiency and transpiration across European forests during the Anthropocene
- Author
-
Frank, D. C., primary, Poulter, B., additional, Saurer, M., additional, Esper, J., additional, Huntingford, C., additional, Helle, G., additional, Treydte, K., additional, Zimmermann, N. E., additional, Schleser, G. H., additional, Ahlström, A., additional, Ciais, P., additional, Friedlingstein, P., additional, Levis, S., additional, Lomas, M., additional, Sitch, S., additional, Viovy, N., additional, Andreu-Hayles, L., additional, Bednarz, Z., additional, Berninger, F., additional, Boettger, T., additional, D‘Alessandro, C. M., additional, Daux, V., additional, Filot, M., additional, Grabner, M., additional, Gutierrez, E., additional, Haupt, M., additional, Hilasvuori, E., additional, Jungner, H., additional, Kalela-Brundin, M., additional, Krapiec, M., additional, Leuenberger, M., additional, Loader, N. J., additional, Marah, H., additional, Masson-Delmotte, V., additional, Pazdur, A., additional, Pawelczyk, S., additional, Pierre, M., additional, Planells, O., additional, Pukiene, R., additional, Reynolds-Henne, C. E., additional, Rinne, K. T., additional, Saracino, A., additional, Sonninen, E., additional, Stievenard, M., additional, Switsur, V. R., additional, Szczepanek, M., additional, Szychowska-Krapiec, E., additional, Todaro, L., additional, Waterhouse, J. S., additional, and Weigl, M., additional
- Published
- 2015
- Full Text
- View/download PDF
207. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance
- Author
-
Zaehle, S., Friend, A., Friedlingstein, P., Dentener, F., Peylin, P., Schulz, M., Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Biogéochimie et écologie des milieux continentaux (Bioemco), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; Global-scale results of the new O-CN terrestrial biosphere model coupling the carbon (C) and nitrogen (N) cycles show that the model produces realistic estimates of presentday C and N stocks and fluxes, despite some regional biases. N availability strongly affects high-latitude foliage area and foliage N, limiting vegetation productivity and present-day high-latitude net C uptake. Anthropogenic N deposition is predicted to have increased net primary productivity due to increases in foliage area and foliage N, contributing 0.2-0.5 Pg C yr À1 to the 1990s global net C uptake. While O-CN's modeled global 1990s terrestrial net C uptake (2.4 Pg C yr À1) is similar to the estimate not accounting for anthropogenic N inputs and N dynamics (2.6 Pg C yr À1), its latitudinal distribution and the sensitivity of the terrestrial C balance to its driving factors are substantially altered by N dynamics, with important implications for future trajectories of the global carbon cycle.
- Published
- 2010
- Full Text
- View/download PDF
208. A Framework for Process-Oriented Evaluation of Earth System Models
- Author
-
Eyring , V. and Friedlingstein, P.
- Subjects
model evaluation - Published
- 2010
209. Carbon and nitrogen cycle dynamics in the O-CN land surface model, II: The role of the nitrogen cycle in the historical terrestrial carbon balance
- Author
-
Zaehle, S., Friend, A., Dentener, F., Friedlingstein, P., Peylin, P., and Schulz, M.
- Abstract
Global-scale results of the new O-CN terrestrial biosphere model coupling the carbon (C) and nitrogen (N) cycles show that the model produces realistic estimates of present-day C and N stocks and fluxes, despite some regional biases. N availability strongly affects high-latitude foliage area and foliage N, limiting vegetation productivity and present-day high-latitude net C uptake. Anthropogenic N deposition is predicted to have increased net primary productivity due to increases in foliage area and foliage N, contributing 0.2–0.5 Pg C yr−1 to the 1990s global net C uptake. While O‐CN's modeled global 1990s terrestrial net C uptake (2.4 Pg C yr−1) is similar to the estimate not accounting for anthropogenic N inputs and N dynamics (2.6 Pg C yr−1), its latitudinal distribution and the sensitivity of the terrestrial C balance to its driving factors are substantially altered by N dynamics, with important implications for future trajectories of the global carbon cycle.
- Published
- 2010
210. Chapitre 3 : Comment reconstituer l'évolution des différentes composantes du système climatique. La biochimie du système climatique au cours du dernier million d'années
- Author
-
Bopp, L., Chappellaz, Jérôme, Delmas, Robert, Friedlingstein, P., Legrand, Michel, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), CLIPS, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Atmosphère et des Cyclones (LACy), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, CHANG (CHANG), Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), J.C. Duplessy and G. Ramstein, Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Météo France-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), CHANG, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology - Published
- 2010
211. Fossil CO2emissions in the post-COVID-19 era
- Author
-
Le Quéré, Corinne, Peters, Glen P., Friedlingstein, Pierre, Andrew, Robbie M., Canadell, Josep G., Davis, Steven J., Jackson, Robert B., and Jones, Matthew W.
- Abstract
Five years after the adoption of the Paris Climate Agreement, growth in global CO2emissions has begun to falter. The pervasive disruptions from the COVID-19 pandemic have radically altered the trajectory of global CO2emissions. Contradictory effects of the post-COVID-19 investments in fossil fuel-based infrastructure and the recent strengthening of climate targets must be addressed with new policy choices to sustain a decline in global emissions in the post-COVID-19 era.
- Published
- 2021
- Full Text
- View/download PDF
212. Footprint of temperature changes in the temperate and boreal forest carbon balance
- Author
-
Peylin, Philippe, Piao, Shilong, Friedlingstein, P., Ciais, Philippe, Zhu, B., Reichstein, M., College of Urban and Environmental Sciences [Beijing], Peking University [Beijing], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), School of Earth Sciences [Bristol], University of Bristol [Bristol], ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), University of California, Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft, Biogéochimie et écologie des milieux continentaux (Bioemco), Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Paris (ENS Paris), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Dynamique de la Biodiversité (LADYBIO), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and University of California (UC)
- Subjects
[SDE]Environmental Sciences - Abstract
International audience; In this study, we use net ecosystem productivity (NEP) measurement data across several forest sites and a simple conceptual model to investigate the linkage between temperature and NEP by considering either temperature change in the recent past or current mean annual temperature (MAT) as a forcing. After removing the effect of stand age, forest NEP is only weakly correlated with MAT. However, temperature changes during the period of 1980-2002 do explain a very significant fraction of the current spatial patterns of NEP, although the response of the terrestrial carbon balance to temperature changes varies with season. Changes in spring temperature having the highest correlation with annual NEP. We also show that temperature changes before the 1970s had a limited influence on the current NEP, and that the impact of recent temperature changes within the last decade on NEP are not strong enough to be observable. Overall, our analysis indicates not only that temperature changes in the recent past is one of the important drivers of today's forest carbon balance in the Northern Hemisphere, but also that the ongoing global warming will contribute significantly to the near-future evolution of the Northern Hemisphere carbon sink. A non-equilibrium framework must be taken into account when studying the impacts of temperature change on current or future forest net carbon balance.
- Published
- 2009
- Full Text
- View/download PDF
213. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)
- Author
-
Sitch, S., Huntingford, C., Gedney, N., Levy, P.E., Lomas, M., Piao, S., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C., PRENTICE, I., Woodward, F., Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], Centre for Ecology and Hydrology [Wallingford] (CEH), Natural Environment Research Council (NERC), Centre for Ecology and Hydrology (CEH), Department of Animal and Plant Sciences [Sheffield], University of Sheffield [Sheffield], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), University of Exeter, University of Bristol [Bristol], Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2008
- Full Text
- View/download PDF
214. Spatio-temporal variability of marine primary and export production in three global coupled climate carbon cycle models
- Author
-
Schneider, B., Bopp, L., Gehlen, M., Segschneider, J., Frölicher, T. L., Joos, F., Cadule, P., Friedlingstein, P., Doney, S. C., Behrenfeld, M. J., Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Meteorologie (MPI-M), Max-Planck-Gesellschaft, Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), Department of Marine Chemistry and Geochemistry (WHOI), Woods Hole Oceanographic Institution (WHOI), Department of Botany and Plant Pathology, Cordley Hall 2082, EGU, Publication, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Universität Bern [Bern]-Universität Bern [Bern]
- Subjects
0106 biological sciences ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,010504 meteorology & atmospheric sciences ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,[SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere ,010604 marine biology & hydrobiology ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,01 natural sciences ,[SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,13. Climate action ,[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,14. Life underwater ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,0105 earth and related environmental sciences - Abstract
This study compares spatial and temporal variability in net primary productivity (PP) and particulate organic carbon (POC) export production (EP) from three different coupled climate carbon cycle models (IPSL, MPIM, NCAR) with observation-based estimates derived from satellite measurements of ocean colour and inverse modelling. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006)\\nocite{Behrenfeld06} with stronger stratification (higher SSTs) leading to negative PP anomalies and vice versa. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for global PP anomalies. Two of the models also reproduce the inverse relationship between stratification (SST) and PP, especially in the equatorial Pacific. With the help of the model results we are able to explain the chain of cause and effect leading from stratification (SST) through nutrient concentrations to PP and finally to EP. There are significant uncertainties in observational PP and especially EP. Our finding of a good agreement between independent estimates from coupled models and satellite observations provides increased confidence that such models can be used as a first basis to estimate the impact of future climate change on marine productivity and carbon export.
- Published
- 2007
215. ENVIRONMENT: Tropical Forests and Climate Policy
- Author
-
Gullison, R., Frumhoff, P., Canadell, J., Field, C., Nepstad, D., Hayhoe, K., Avissar, R., Curran, L., Friedlingstein, P., Jones, C., Nobre, C., University of British Columbia (UBC), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2007
- Full Text
- View/download PDF
216. Couplings Between Changes in the Climate System and Biogeochemistry
- Author
-
Denman, Kenneth L., Brasseur, Guy, Chidthaisong, Amnat, Ciais, Philippe, Cox, Peter M., Dickinson, Robert E., Hauglustaine, Didier, Heinze, Christoph, Holland, Elisabeth, Jacob, Daniel, Lohmann, Ulrike, Ramachandran, Srikanthan, Dias, Pedro Leite da Silva, Wofsy, Steven C., Zhang, Xiaoye, Archer, D., Arora, V., Austin, J., Baker, D., Berry, J.A., Betts, R., Bonan, G., Bousquet, P., Canadell, J., Christian, J., Clark, D.A., Dameris, M., Dentener, F., Easterling, D., Eyring, V., Feichter, J., Friedlingstein, P., Fung, I., Fuzzi, S., Gong, S., Gruber, N., Guenther, A., Gurney, K., Henderson-Sellers, A., House, J., Jones, A., Jones, C., Kärcher, B., Kawamiya, M., Lassey, K., Quéré, C. Le, Leck, C., Lee-Taylor, J., Malhi, Y., Masarie, K., Mcfiggans, G., Menon, S., Miller, J.B., Peylin, P., Pitman, A., Quaas, J., Raupach, M., Rayner, P., Rehder, G., Riebesell, U., Rödenbeck, C., Rotstayn, L., Roulet, N., Sabine, C., Schultz, M.G., Schulz, M., Schwartz, S.E., Steffen, W., Stevenson, D., Tian, Y., Trenberth, K.E., Noije, T. Van, Wild, O., Zhang, T., Zhou, L., Denman, Kenneth, Boonpragob, Kansri, Heimann, Martin, Germany, Switzerland, Molina, Mario, Da, P, Dias, Silva, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), and Modélisation des Surfaces et Interfaces Continentales (MOSAIC)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2007
217. Impact of land cover change on surface climate: Relevance of the radiative forcing concept
- Author
-
Davin, E., de Noblet-Ducoudré, N., Friedlingstein, P., Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology - Abstract
International audience; We use the IPSL climate model to investigate biophysical impacts of Anthropogenic Land Cover Change (ALCC) on surface climate. Including both the changes in surface albedo and evapotranspiration, we find that ALCC represents a radiative forcing of À0.29 W/m 2 from 1860 to 1992 and of À0.7 W/m 2 from 1992 to 2100. The simulated surface temperature response to ALCC indicates a historical cooling of 0.05 K and an additional cooling due to future changes of 0.14 K, which is consistent with the sign of the radiative forcing. However, this cooling is substantially lower than the one we would have obtained if it was caused by a radiatively equivalent change in CO 2 concentration. These results thus question the relevance of the radiative forcing framework in the context of land use change, since the radiative forcing due to ALCC may not be comparable to the one exerted by other anthropogenic perturbations.
- Published
- 2007
- Full Text
- View/download PDF
218. Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison [Review]
- Author
-
Friedlingstein, P., Cox, P., Betts, R., Bopp L., L., Von Bloh, W., Brovkin, V., https://orcid.org/0000-0001-6420-3198, Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K., Schnur, R., https://orcid.org/0000-0002-7380-8313, Strassmann, K., Weaver, A., Yoshikawa, C., and Zeng, N.
- Published
- 2006
219. The new IPSL climate system model: IPSL-CM4
- Author
-
Marti, O., Braconnot, P., Bellier, J., Benshila, R., Bony, S., Brockmann, P., Cadule, P., Caubel, A., Denvil, S., Dufresne, J.L., Fairhead, L., Filiberti, M.-A., Fichefet, T., Foujols, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Hourdin, F., Krinner, G., Lévy, C., Madec, G., Musat, I., De Noblet, N., Polcher, J., Talandier, C., Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL), École normale supérieure - Paris (ENS Paris)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National d'Études Spatiales [Toulouse] (CNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Département des Géosciences - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology - Abstract
International audience; The estimate of future climate change and of its impact on the environment requires to increase our knowledge of the complex interactions between the atmosphere, the ocean, sea-ice, land surfaces and glaciers. These components are coupled through the cycles of energy and water, but also through biogeochemical cycles such as the carbon or the ozone cycles. One of the goals of the IPSL modeling community is to study how these different couplings can modulate climate and climate variability, and to determine how feedbacks in the Earth system control the response of climate to a perturbation such as the anthropogenic emissions of greenhouse gases. For this purpose, the Earth system model of the IPSL is developed as a modular suite of model components of the Earth system that can be use either as stand alone models or coupled to each other. This note presents the new features and results of the last version of the global IPSL coupled model that will be used to run the set of simulations planned for the next IPCC assessment. In particular, chapter 2 presents the model components of the coupled system, highlighting important features for the coupling or the quality of model simulations. Chapter 3 synthesise all the coupling procedures and the coupling environment, and chapter 4 discussed the major characteristics of the model climatology.
- Published
- 2005
220. Multiple constraints on regional CO2 flux variations over land and oceans
- Author
-
Peylin, Philippe, Bousquet, P., C. Le, Quere, Sitch, S., Friedlingstein, P., Mckinley, G., Gruber, N., Rayner, P., Ciais, P., Biogéochimie et écologie des milieux continentaux (Bioemco), and Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Paris (ENS Paris)
- Subjects
VEGETATION DYNAMICS ,SUBTROPICAL ECOSYSTEMS ,[SDE.MCG]Environmental Sciences/Global Changes ,EL-NINO ,ATMOSPHERIC CARBON-DIOXIDE ,SOUTHERN OSCILLATION ,CIRCULATION MODEL ,INTERANNUAL CLIMATE VARIABILITY ,NORTH-ATLANTIC OCEAN ,DECIDUOUS FOREST ,TERRESTRIAL ECOSYSTEMS - Abstract
International audience; To increase our understanding of the carbon cycle, we compare regional estimates of CO2 flux variability for 1980 - 1998 from atmospheric CO2 inversions and from process-based models of the land (SLAVE and LPJ) and ocean (OPA and MIT). Over the land, the phase and amplitude of the different estimates agree well, especially at continental scale. Flux variations are predominantly controlled by El Nino events, with the exception of the post-Pinatubo period of the early 1990s. Differences between the two land models result mainly from the response of heterotrophic respiration to precipitation and temperature. The "Lloyd and Taylor'' formulation of LPJ [Lloyd and Taylor, 1994] agrees better with the inverse estimates. Over the ocean, inversion and model results agree only in the equatorial Pacific and partly in the austral ocean. In the austral ocean, an increased CO2 sink is present in the inversion and OPA model, and results from increased stratification of the ocean. In the northern oceans, the inversions estimate large flux variations in line with time-series observations of the subtropical Atlantic, but not supported by the two model estimates, thus suggesting that the CO2 variability from high-latitude oceans needs further investigation.
- Published
- 2005
221. Recent trends and drivers of regional sources and sinks of carbon dioxide
- Author
-
Sitch, S., primary, Friedlingstein, P., additional, Gruber, N., additional, Jones, S. D., additional, Murray-Tortarolo, G., additional, Ahlström, A., additional, Doney, S. C., additional, Graven, H., additional, Heinze, C., additional, Huntingford, C., additional, Levis, S., additional, Levy, P. E., additional, Lomas, M., additional, Poulter, B., additional, Viovy, N., additional, Zaehle, S., additional, Zeng, N., additional, Arneth, A., additional, Bonan, G., additional, Bopp, L., additional, Canadell, J. G., additional, Chevallier, F., additional, Ciais, P., additional, Ellis, R., additional, Gloor, M., additional, Peylin, P., additional, Piao, S. L., additional, Le Quéré, C., additional, Smith, B., additional, Zhu, Z., additional, and Myneni, R., additional
- Published
- 2015
- Full Text
- View/download PDF
222. Advanced terrestrial ecosystem analysis and modelling (ATEAM)
- Author
-
Schröter, D., Acosta-Michlik, L., Arnell, A.W., Araújo, M.B., Badeck, F., Bakker, Martha, Bondeau, A., Brugmann, H., Carter, T., Vega de la-Leinert, A.C., Erhard, M., Espineira, G.Z., Ewert, F., Fritsch, U., Friedlingstein, P., Glendining, M., Gracia, C.A., Hickler, T., House, J., Hulme, M., Kankaanpää, S., Klein, R.J.T., Krukenberg, B., Lavorel, S., Leemans, R., Lindner, M., Liski, J., Metzger, M.J., Meyer, J., Mitchell, T., Mohren, G.M.J., Morales, P., Moreno, J.M., Reginster, I., Reidsma, P., Rounsevell, M., Pla, E., Pluimers, J.C., Prentice, I.C., Pussinen, A., Sánchez, A., Sabaté, S., Sitch, S., Smith, B., Smith, P., Sykes, M.T., Thonicke, K., Thuiller, W., Tuck, G., van der Werf, G., Vayreda, J., Wattenbach, M., Wilson, D.W., Woodward, F.I., Zaehle, S., Zierl, B., Zudin, S., and Cramer, W.
- Subjects
WIMEK ,Landgebruiksplanning ,WASS ,PE&RC ,Forest Ecology and Forest Management ,Bodemgeografie en Landschap ,Environmental Systems Analysis ,Plant Production Systems ,Milieusysteemanalyse ,Plantaardige Productiesystemen ,Land Use Planning ,Soil Geography and Landscape ,Life Science ,Bosecologie en Bosbeheer - Published
- 2004
223. A model of the Earth's Dole effect
- Author
-
Hoffmann, G., Cuntz, M., Weber, C., Ciais, P., Friedlingstein, P., Heimann, M., Jouzel, J., Jörg Kaduk, Maier-Reimer, E., Seibt, U., Six, K., Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Max-Planck-Institut für Meteorologie (MPI-M), Max-Planck-Gesellschaft, ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Max Planck Institute for Biogeochemistry (MPI-BGC), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), University of Leicester, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0325) ,INDEX TERMS: 0330 Atmospheric Composition and Structure: Geochemical cycles ,[SDU]Sciences of the Universe [physics] ,water isotopes ,1610 Global Change: Atmosphere (0315 ,Dole effect ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDE]Environmental Sciences ,carbon cycle ,1040 Geochemistry: Isotopic composition/ chemistry ,KEYWORDS: carbon cycle ,1854 Hydrology: Precipitation (3354) - Abstract
The Earth's Dole effect describes the isotopic O-18/O-16-enrichment of atmospheric oxygen with respect to ocean water, amounting under today's conditions to 23.5parts per thousand. We have developed a model of the Earth's Dole effect by combining the results of three-dimensional models of the oceanic and terrestrial carbon and oxygen cycles with results of atmospheric general circulation models (AGCMs) with built-in water isotope diagnostics. We obtain a range from 22.4parts per thousand to 23.3parts per thousand for the isotopic enrichment of atmospheric oxygen. We estimate a stronger contribution to the global Dole effect by the terrestrial relative to the marine biosphere in contrast to previous studies. This is primarily caused by a modeled high leaf water enrichment of 5-6parts per thousand. Leaf water enrichment rises by similar to1parts per thousand to 6-7parts per thousand when we use it to fit the observed 23.5parts per thousand of the global Dole effect. The present model is designed to be utilized in forthcoming paleo studies allowing a quantitative analysis of long-term observations from polar ice cores. [References: 73]
- Published
- 2004
- Full Text
- View/download PDF
224. ATEAM (advanced Terrestrial Ecosystem Analysis and Modelling) final project report, EC project EVK2-2000-00075
- Author
-
Schröter, D., Acosta-Michlik, L., Arnell, A.W., Araujo, M.B., Badeck, F., Bakker, M., Bondeau, A., Bugmann, H., Carter, T., de la Vega-Leinert, A.C., Erhard, M., Espineira, G.Z., Ewert, F., Friedlingstein, P., Fritsch, U., Glendining, M., Gracia, C.A., Hickler, T., House, J., Hulme, M., Klein, R.J.T., Krukenberg, B., Lavorel, S., Leemans, R., Lindner, M., Liski, J., Metzger, M.J., Meyer, J., Mitchell, T., Mohren, G.M.J., Morales, P., Moreno, J.M., Reginster, I., Reidsma, P., Rounsevell, M., Pluimers, J.C., Prentice, I.C., Pussinen, A., Sanchez, A., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M.T., Thonicke, K., Thuiller, W., Tuck, G., van der Werf, W., Vayreda, J., Wattenbach, M., Wilson, D.W., Woodward, F.I., Zaehle, S., Zierl, B., Zudin, S., and Cramer, W.
- Subjects
Plant Production Systems ,Plantaardige Productiesystemen ,Life Science ,Bosecologie en Bosbeheer ,Leerstoelgroep Gewas- en onkruidecologie ,PE&RC ,Crop and Weed Ecology ,Forest Ecology and Forest Management - Published
- 2004
225. Persistent growth of CO2 emissions and implications for reaching climate targets
- Author
-
Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, Detlef, Le Quéré, C., Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, Detlef, and Le Quéré, C.
- Abstract
Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.
- Published
- 2014
226. Sharing a quota on cumulative carbon emissions
- Author
-
Raupach, MR, Raupach, MR, Davis, SJ, Peters, GP, Andrew, RM, Canadell, JG, Ciais, P, Friedlingstein, P, Jotzo, F, Van Vuuren, DP, Le Quéré, C, Raupach, MR, Raupach, MR, Davis, SJ, Peters, GP, Andrew, RM, Canadell, JG, Ciais, P, Friedlingstein, P, Jotzo, F, Van Vuuren, DP, and Le Quéré, C
- Abstract
Any limit on future global warming is associated with a quota on cumulative global CO2 emissions. We translate this global carbon quota to regional and national scales, on a spectrum of sharing principles that extends from continuation of the present distribution of emissions to an equal per-capita distribution of cumulative emissions. A blend of these endpoints emerges as the most viable option. For a carbon quota consistent with a 2°C warming limit (relative to pre-industrial levels), the necessary long-term mitigation rates are very challenging (typically over 5% per year), both because of strong limits on future emissions from the global carbon quota and also the likely short-term persistence in emissions growth in many regions.
- Published
- 2014
227. Persistent growth of CO2 emissions and implications for reaching climate targets
- Author
-
Environmental Sciences, Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, Detlef, Le Quéré, C., Environmental Sciences, Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, Detlef, and Le Quéré, C.
- Published
- 2014
228. Global carbon budget 2013
- Author
-
Environmental Sciences, Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D. C E, Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, Kees, Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G. H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., Van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., Zaehle, S., Environmental Sciences, Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D. C E, Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, Kees, Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G. H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., Van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle, S.
- Published
- 2014
229. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
- Author
-
Pachauri, R.K., Meyer, L., Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.-K., Pörtner, Hans-Otto, Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., van Ypserle, J.-P., Pachauri, R.K., Meyer, L., Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.-K., Pörtner, Hans-Otto, Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van Ypserle, J.-P.
- Published
- 2014
230. Sharing a quota on cumulative carbon emissions
- Author
-
Raupach, Michael, Davis, Steven J., Peters, Glen P., Andrew, Robbie M, Canadell, Josep G., Ciais, Philippe, Friedlingstein , P., Jotzo, Frank, Vuuren, Detlef P. van, Le Quere, C., Raupach, Michael, Davis, Steven J., Peters, Glen P., Andrew, Robbie M, Canadell, Josep G., Ciais, Philippe, Friedlingstein , P., Jotzo, Frank, Vuuren, Detlef P. van, and Le Quere, C.
- Abstract
Any limit on future global warming is associated with a quota on cumulative global CO2 emissions. We translate this global carbon quota to regional and national scales, on a spectrum of sharing principles that extends from continuation of the present distribution of emissions to an equal per-capita distribution of cumulative emissions. A blend of these endpoints emerges as the most viable option. For a carbon quota consistent with a 2 °C warming limit (relative to pre-industrial levels), the necessary long-term mitigation rates are very challenging (typically over 5% per year), both because of strong limits on future emissions from the global carbon quota and also the likely short-term persistence in emissions growth in many regions.
- Published
- 2014
231. Persistent growth of CO2 emissions and implications for reaching climate targets
- Author
-
Friedlingstein , P., Andrew, Robbie M, Rogelj, J., Peters, G.P., Canadell, Josep G., Knutti, R., Luderer, G., Raupach, Michael, Schaeffer, M., van Vuuren, D.P., Le Quere, C., Friedlingstein , P., Andrew, Robbie M, Rogelj, J., Peters, G.P., Canadell, Josep G., Knutti, R., Luderer, G., Raupach, Michael, Schaeffer, M., van Vuuren, D.P., and Le Quere, C.
- Abstract
Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2°C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.
- Published
- 2014
232. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: simulating historical global burned area and fire regimes
- Author
-
Yue, C., primary, Ciais, P., additional, Cadule, P., additional, Thonicke, K., additional, Archibald, S., additional, Poulter, B., additional, Hao, W. M., additional, Hantson, S., additional, Mouillot, F., additional, Friedlingstein, P., additional, Maignan, F., additional, and Viovy, N., additional
- Published
- 2014
- Full Text
- View/download PDF
233. Global carbon budget 2014
- Author
-
Le Quéré, C., primary, Moriarty, R., additional, Andrew, R. M., additional, Peters, G. P., additional, Ciais, P., additional, Friedlingstein, P., additional, Jones, S. D., additional, Sitch, S., additional, Tans, P., additional, Arneth, A., additional, Boden, T. A., additional, Bopp, L., additional, Bozec, Y., additional, Canadell, J. G., additional, Chevallier, F., additional, Cosca, C. E., additional, Harris, I., additional, Hoppema, M., additional, Houghton, R. A., additional, House, J. I., additional, Jain, A., additional, Johannessen, T., additional, Kato, E., additional, Keeling, R. F., additional, Kitidis, V., additional, Klein Goldewijk, K., additional, Koven, C., additional, Landa, C. S., additional, Landschützer, P., additional, Lenton, A., additional, Lima, I. D., additional, Marland, G., additional, Mathis, J. T., additional, Metzl, N., additional, Nojiri, Y., additional, Olsen, A., additional, Ono, T., additional, Peters, W., additional, Pfeil, B., additional, Poulter, B., additional, Raupach, M. R., additional, Regnier, P., additional, Rödenbeck, C., additional, Saito, S., additional, Salisbury, J. E., additional, Schuster, U., additional, Schwinger, J., additional, Séférian, R., additional, Segschneider, J., additional, Steinhoff, T., additional, Stocker, B. D., additional, Sutton, A. J., additional, Takahashi, T., additional, Tilbrook, B., additional, van der Werf, G. R., additional, Viovy, N., additional, Wang, Y.-P., additional, Wanninkhof, R., additional, Wiltshire, A., additional, and Zeng, N., additional
- Published
- 2014
- Full Text
- View/download PDF
234. Supplementary material to "Global carbon budget 2014"
- Author
-
Le Quéré, C., primary, Moriarty, R., additional, Andrew, R. M., additional, Peters, G. P., additional, Ciais, P., additional, Friedlingstein, P., additional, Jones, S. D., additional, Sitch, S., additional, Tans, P., additional, Arneth, A., additional, Boden, T. A., additional, Bopp, L., additional, Bozec, Y., additional, Canadell, J. G., additional, Chevallier, F., additional, Cosca, C. E., additional, Harris, I., additional, Hoppema, M., additional, Houghton, R. A., additional, House, J. I., additional, Jain, A., additional, Johannessen, T., additional, Kato, E., additional, Keeling, R. F., additional, Kitidis, V., additional, Klein Goldewijk, K., additional, Koven, C., additional, Landa, C. S., additional, Landschützer, P., additional, Lenton, A., additional, Lima, I. D., additional, Marland, G., additional, Mathis, J. T., additional, Metzl, N., additional, Nojiri, Y., additional, Olsen, A., additional, Ono, T., additional, Peters, W., additional, Pfeil, B., additional, Poulter, B., additional, Raupach, M. R., additional, Regnier, P., additional, Rödenbeck, C., additional, Saito, S., additional, Salisbury, J. E., additional, Schuster, U., additional, Schwinger, J., additional, Séférian, R., additional, Segschneider, J., additional, Steinhoff, T., additional, Stocker, B. D., additional, Sutton, A. J., additional, Takahashi, T., additional, Tilbrook, B., additional, van der Werf, G. R., additional, Viovy, N., additional, Wang, Y.-P., additional, Wanninkhof, R., additional, Wiltshire, A., additional, and Zeng, N., additional
- Published
- 2014
- Full Text
- View/download PDF
235. Persistent growth of CO2 emissions and implications for reaching climate targets
- Author
-
Friedlingstein, P., primary, Andrew, R. M., additional, Rogelj, J., additional, Peters, G. P., additional, Canadell, J. G., additional, Knutti, R., additional, Luderer, G., additional, Raupach, M. R., additional, Schaeffer, M., additional, van Vuuren, D. P., additional, and Le Quéré, C., additional
- Published
- 2014
- Full Text
- View/download PDF
236. Supplementary material to "Modelling fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: Simulating historical global burned area and fire regime"
- Author
-
Yue, C., primary, Ciais, P., additional, Cadule, P., additional, Thonicke, K., additional, Archibald, S., additional, Poulter, B., additional, Hao, W. M., additional, Hantson, S., additional, Mouillot, F., additional, Friedlingstein, P., additional, Maignan, F., additional, and Viovy, N., additional
- Published
- 2014
- Full Text
- View/download PDF
237. Modelling fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: Simulating historical global burned area and fire regime
- Author
-
Yue, C., primary, Ciais, P., additional, Cadule, P., additional, Thonicke, K., additional, Archibald, S., additional, Poulter, B., additional, Hao, W. M., additional, Hantson, S., additional, Mouillot, F., additional, Friedlingstein, P., additional, Maignan, F., additional, and Viovy, N., additional
- Published
- 2014
- Full Text
- View/download PDF
238. Fractal properties of forest fires in Amazonia as a basis for modelling pan-tropical burnt area
- Author
-
Fletcher, I. N., primary, Aragão, L. E. O. C., additional, Lima, A., additional, Shimabukuro, Y., additional, and Friedlingstein, P., additional
- Published
- 2014
- Full Text
- View/download PDF
239. Global trends in carbon sinks and their relationships with CO2and temperature
- Author
-
Fernández-Martínez, M., Sardans, J., Chevallier, F., Ciais, P., Obersteiner, M., Vicca, S., Canadell, J. G., Bastos, A., Friedlingstein, P., Sitch, S., Piao, S. L., Janssens, I. A., and Peñuelas, J.
- Abstract
Elevated CO2concentrations increase photosynthesis and, potentially, net ecosystem production (NEP), meaning a greater CO2uptake. Climate, nutrients and ecosystem structure, however, influence the effect of increasing CO2. Here we analysed global NEP from MACC-II and Jena CarboScope atmospheric inversions and ten dynamic global vegetation models (TRENDY), using statistical models to attribute the trends in NEP to its potential drivers: CO2, climatic variables and land-use change. We found that an increased CO2was consistently associated with an increased NEP (1995–2014). Conversely, increased temperatures were negatively associated with NEP. Using the two atmospheric inversions and TRENDY, the estimated global sensitivities for CO2were 6.0 ± 0.1, 8.1 ± 0.3 and 3.1 ± 0.1 PgC per 100 ppm (~1 °C increase), and −0.5 ± 0.2, −0.9 ± 0.4 and −1.1 ± 0.1 PgC °C−1for temperature. These results indicate a positive CO2effect on terrestrial C sinks that is constrained by climate warming.
- Published
- 2019
- Full Text
- View/download PDF
240. Widespread seasonal compensation effects of spring warming on northern plant productivity
- Author
-
Buermann, Wolfgang, Forkel, Matthias, O’Sullivan, Michael, Sitch, Stephen, Friedlingstein, Pierre, Haverd, Vanessa, Jain, Atul K., Kato, Etsushi, Kautz, Markus, Lienert, Sebastian, Lombardozzi, Danica, Nabel, Julia E. M. S., Tian, Hanqin, Wiltshire, Andrew J., Zhu, Dan, Smith, William K., and Richardson, Andrew D.
- Abstract
Climate change is shifting the phenological cycles of plants1, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system2. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season3,4and increased ecosystem productivity early in the season5. In situ6and regional7–9studies also provide evidence for lagged effects of spring warmth on plant productivity during the subsequent summer and autumn. However, our current understanding of these lagged effects, including their direction (beneficial or adverse) and geographic distribution, is still very limited. Here we analyse satellite, field-based and modelled data for the period 1982–2011 and show that there are widespread and contrasting lagged productivity responses to spring warmth across northern ecosystems. On the basis of the observational data, we find that roughly 15 per cent of the total study area of about 41 million square kilometres exhibits adverse lagged effects and that roughly 5 per cent of the total study area exhibits beneficial lagged effects. By contrast, current-generation terrestrial carbon-cycle models predict much lower areal fractions of adverse lagged effects (ranging from 1 to 14 per cent) and much higher areal fractions of beneficial lagged effects (ranging from 9 to 54 per cent). We find that elevation and seasonal precipitation patterns largely dictate the geographic pattern and direction of the lagged effects. Inadequate consideration in current models of the effects of the seasonal build-up of water stress on seasonal vegetation growth may therefore be able to explain the differences that we found between our observation-constrained estimates and the model-constrained estimates of lagged effects associated with spring warming. Overall, our results suggest that for many northern ecosystems the benefits of warmer springs on growing-season ecosystem productivity are effectively compensated for by the accumulation of seasonal water deficits, despite the fact that northern ecosystems are thought to be largely temperature- and radiation-limited10.
- Published
- 2018
- Full Text
- View/download PDF
241. Latitudinal limits to the predicted increase of the peatland carbon sink with warming
- Author
-
Gallego-Sala, Angela, Charman, Dan, Brewer, Simon, Page, Susan, Prentice, I., Friedlingstein, Pierre, Moreton, Steve, Amesbury, Matthew, Beilman, David, Björck, Svante, Blyakharchuk, Tatiana, Bochicchio, Christopher, Booth, Robert, Bunbury, Joan, Camill, Philip, Carless, Donna, Chimner, Rodney, Clifford, Michael, Cressey, Elizabeth, Courtney-Mustaphi, Colin, Vleeschouwer, François, Jong, Rixt, Fialkiewicz-Koziel, Barbara, Finkelstein, Sarah, Garneau, Michelle, Githumbi, Esther, Hribjlan, John, Holmquist, James, Hughes, Paul, Jones, Chris, Jones, Miriam, Karofeld, Edgar, Klein, Eric, Kokfelt, Ulla, Korhola, Atte, Lacourse, Terri, Roux, Gael, Lamentowicz, Mariusz, Large, David, Lavoie, Martin, Loisel, Julie, Mackay, Helen, MacDonald, Glen, Makila, Markku, Magnan, Gabriel, Marchant, Robert, Marcisz, Katarzyna, Martínez Cortizas, Antonio, Massa, Charly, Mathijssen, Paul, Mauquoy, Dmitri, Mighall, Timothy, Mitchell, Fraser, Moss, Patrick, Nichols, Jonathan, Oksanen, Pirita, Orme, Lisa, Packalen, Maara, Robinson, Stephen, Roland, Thomas, Sanderson, Nicole, Sannel, A., Silva-Sánchez, Noemí, Steinberg, Natascha, Swindles, Graeme, Turner, T., Uglow, Joanna, Väliranta, Minna, Bellen, Simon, Linden, Marjolein, Geel, Bas, Wang, Guoping, Yu, Zicheng, Zaragoza-Castells, Joana, and Zhao, Yan
- Abstract
The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around ad2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century. Analysis of peatland carbon accumulation over the last millennium and its association with global-scale climate space indicates an ongoing carbon sink into the future, but with decreasing strength as conditions warm.
- Published
- 2018
- Full Text
- View/download PDF
242. Reconciling global-model estimates and country reporting of anthropogenic forest CO2sinks
- Author
-
Grassi, Giacomo, House, Jo, Kurz, Werner A., Cescatti, Alessandro, Houghton, Richard A., Peters, Glen P., Sanz, Maria J., Viñas, Raul Abad, Alkama, Ramdane, Arneth, Almut, Bondeau, Alberte, Dentener, Frank, Fader, Marianela, Federici, Sandro, Friedlingstein, Pierre, Jain, Atul K., Kato, Etsushi, Koven, Charles D., Lee, Donna, Nabel, Julia E. M. S., Nassikas, Alexander A., Perugini, Lucia, Rossi, Simone, Sitch, Stephen, Viovy, Nicolas, Wiltshire, Andy, and Zaehle, Sönke
- Abstract
Achieving the long-term temperature goal of the Paris Agreement requires forest-based mitigation. Collective progress towards this goal will be assessed by the Paris Agreement’s Global stocktake. At present, there is a discrepancy of about 4 GtCO2yr−1in global anthropogenic net land-use emissions between global models (reflected in IPCC assessment reports) and aggregated national GHG inventories (under the UNFCCC). We show that a substantial part of this discrepancy (about 3.2 GtCO2yr−1) can be explained by conceptual differences in anthropogenic forest sink estimation, related to the representation of environmental change impacts and the areas considered as managed. For a more credible tracking of collective progress under the Global stocktake, these conceptual differences between models and inventories need to be reconciled. We implement a new method of disaggregation of global land model results that allows greater comparability with GHG inventories. This provides a deeper understanding of model–inventory differences, allowing more transparent analysis of forest-based mitigation and facilitating a more accurate Global stocktake.
- Published
- 2018
- Full Text
- View/download PDF
243. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period
- Author
-
Piao, Shilong, Huang, Mengtian, Liu, Zhuo, Wang, Xuhui, Ciais, Philippe, Canadell, Josep G., Wang, Kai, Bastos, Ana, Friedlingstein, Pierre, Houghton, Richard A., Le Quéré, Corinne, Liu, Yongwen, Myneni, Ranga B., Peng, Shushi, Pongratz, Julia, Sitch, Stephen, Yan, Tao, Wang, Yilong, Zhu, Zaichun, Wu, Donghai, and Wang, Tao
- Abstract
The terrestrial carbon sink accelerated during 1998–2012, concurrently with the slow warming period, but the mechanisms behind this acceleration are unclear. Here we analyse recent changes in the net land carbon sink (NLS) and its driving factors, using atmospheric inversions and terrestrial carbon models. We show that the linear trend of NLS during 1998–2012 is about 0.17 ± 0.05 Pg C yr−2, which is three times larger than during 1980–1998 (0.05 ± 0.05 Pg C yr−2). According to terrestrial carbon model simulations, the intensification of the NLS cannot be explained by CO2fertilization or climate change alone. We therefore use a bookkeeping model to explore the contribution of changes in land-use emissions and find that decreasing land-use emissions are the dominant cause of the intensification of the NLS during the slow warming period. This reduction of land-use emissions is due to both decreased tropical forest area loss and increased afforestation in northern temperate regions. The estimate based on atmospheric inversions shows consistently reduced land-use emissions, whereas another bookkeeping model did not reproduce such changes, probably owing to missing the signal of reduced tropical deforestation. These results highlight the importance of better constraining emissions from land-use change to understand recent trends in land carbon sinks.
- Published
- 2018
- Full Text
- View/download PDF
244. Large‐Scale Droughts Responsible for Dramatic Reductions of Terrestrial Net Carbon Uptake Over North America in 2011 and 2012
- Author
-
He, Wei, Ju, Weimin, Schwalm, Christopher R., Sippel, Sebastian, Wu, Xiaocui, He, Qiaoning, Song, Lian, Zhang, Chunhua, Li, Jing, Sitch, Stephen, Viovy, Nicolas, Friedlingstein, Pierre, and Jain, Atul K.
- Abstract
Recently, severe droughts that occurred in North America are likely to have impacted its terrestrial carbon sink. However, process‐based understanding of how meteorological conditions prior to the onset of drought, for instance warm or cold springs, affect drought‐induced carbon cycle effects remains scarce. Here we assess and compare the response of terrestrial carbon fluxes to summer droughts in 2011 and 2012 characterized by contrasting spring conditions. The analysis is based on a comprehensive ensemble of carbon cycle models, including FLUXCOM, TRENDY v5, SiBCASA, CarbonTracker Europe, and CarbonTracker, and emerging Earth observations. In 2011, large reductions of net ecosystem production (NEP; −0.24 ± 0.17 Pg C/year) are due to decreased gross primary production (−0.17 ± 0.18 Pg C/year) and slightly increased ecosystem respiration (+0.07 ± 0.17 Pg C/year). Conversely, in 2012, NEP reductions (−0.17 ± 0.25 Pg C/year) are attributed to a larger increase of ecosystem respiration (+0.48 ± 0.27 Pg C/year) than gross primary production (+0.31 ± 0.29 Pg C/year), induced predominantly by an extra warmer spring prior to summer drought. Two temperate ecoregions crops/agriculture and the grass/shrubs contribute largest to these reductions and also dominate the interannual variations of NEP during 2007–2014. Moreover, the warming spring compensated largely the negative carbon anomaly due to summer drought, consistent with earlier studies; however, the compensation occurred only in some specific ecoregions. Overall, our analysis offers a refined view on recent carbon cycle variability and extremes in North America. It corroborates earlier results but also highlights differences with respect to ecoregion‐specific carbon cycle responses to drought and heat. Large NEP reductions in 2011 and 2012 are due to contrasting effects of GPP and Reco in the context of droughtsTwo temperate ecoregions crops/agriculture and grass/shrubs contributed largest to these reductionsCompensation of drought‐induced carbon uptake reductions due to warm spring occurred only in some specific ecoregions
- Published
- 2018
- Full Text
- View/download PDF
245. Global response of the terrestrial biosphere to CO 2 and climate change using a coupled climate-carbon cycle model
- Author
-
Berthelot, M., Friedlingstein, P., Ciais, P., Monfray, P., Dufresne, J., Le Treut, H., Fairhead, L., Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ICOS-ATC (ICOS-ATC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; [1] We study the response of the land biosphere to climate change by coupling a climate general circulation model to a global carbon cycle model. This coupled model was forced by observed CO 2 emissions for the 1860-1990 period and by the IPCC SRES-A2 emission scenario for the 1991-2100 period. During the historical period, our simulated Net Primary Production (NPP) and net land uptake (NEP) are comparable to the observations in term of trend and variability. By the end of the 21st century, we show that the global NEP is reduced by 56% due to the climate change. In the tropics, increasing temperature, through an increase of evapotranspiration, acts to reduce the soil water content, which leads to a 80% reduction of net land CO 2 uptake. As a consequence, tropical carbon storage saturates by the end of the simulation, some regions becoming sources of CO 2. On the contrary, in northern high latitudes, increasing temperature stimulates the land biosphere by lengthening the growing season by about 18 days by 2100 which in turn leads to a NEP increase of 11%. Overall, the negative climate impact in the tropics is much larger than the positive impact simulated in the extratropics, therefore, climate change reduce the global land carbon uptake. This constitutes a positive feedback in the climate-carbon cycle system. INDEX TERMS: 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 1615 Global Change: Biogeochemical processes (4805); 1630 Global Change: Impact phenomena; KEYWORDS: climate change impact, terrestrial carbon cycle Citation: Berthelot, M., P. Friedlingstein, P. Ciais, P. Monfray, J. L. Dufresne, H. Le Treut, and L. Fairhead, Global response of the terrestrial biosphere to CO 2 and climate change using a coupled climate-carbon cycle model, Global Biogeochem.
- Published
- 2002
- Full Text
- View/download PDF
246. On the magnitude of positive feedback between future climate change and the carbon cycle
- Author
-
Dufresne, J. -L, Fairhead, L., Le Treut, H., Berthelot, M., laurent bopp, Ciais, P., Friedlingstein, P., Monfray, P., Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2002
- Full Text
- View/download PDF
247. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
- Author
-
Dufresne, J-l., Foujols, M-a., Denvil, S., Caubel, A., Marti, O., Aumont, Olivier, Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A, Cugnet, D., De Noblet, N., Duvel, J-p., Ethe, Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J-y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M, Lefevre, F., Levy, C., Li, Zhanbin, Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M, Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C, Schulz, M., Swingedouw, D., Szopa, S., Talandier, Claude, Terray, P., Viovy, N., Vuichard, N., Dufresne, J-l., Foujols, M-a., Denvil, S., Caubel, A., Marti, O., Aumont, Olivier, Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A, Cugnet, D., De Noblet, N., Duvel, J-p., Ethe, Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J-y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M, Lefevre, F., Levy, C., Li, Zhanbin, Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M, Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C, Schulz, M., Swingedouw, D., Szopa, S., Talandier, Claude, Terray, P., Viovy, N., and Vuichard, N.
- Abstract
We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes i
- Published
- 2013
- Full Text
- View/download PDF
248. Long-Term climate change commitment and reversibility: An EMIC intercomparison
- Author
-
Zickfeld, K, Zickfeld, K, Eby, M, Weaver, AJ, Alexander, K, Crespin, E, Edwards, NR, Eliseev, AV, Feulner, G, Fichefet, T, Forest, CE, Friedlingstein, P, Goosse, H, Holden, PB, Joos, F, Kawamiya, M, Kicklighter, D, Kienert, H, Matsumoto, K, Mokhov, II, Monier, E, Olsen, SM, Pedersen, JOP, Perrette, M, Philippon-Berthier, G, Ridgwell, A, Schlosser, A, Von Deimling, TS, Shaffer, G, Sokolov, A, Spahni, R, Steinacher, M, Tachiiri, K, Tokos, KS, Yoshimori, M, Zeng, N, Zhao, F, Zickfeld, K, Zickfeld, K, Eby, M, Weaver, AJ, Alexander, K, Crespin, E, Edwards, NR, Eliseev, AV, Feulner, G, Fichefet, T, Forest, CE, Friedlingstein, P, Goosse, H, Holden, PB, Joos, F, Kawamiya, M, Kicklighter, D, Kienert, H, Matsumoto, K, Mokhov, II, Monier, E, Olsen, SM, Pedersen, JOP, Perrette, M, Philippon-Berthier, G, Ridgwell, A, Schlosser, A, Von Deimling, TS, Shaffer, G, Sokolov, A, Spahni, R, Steinacher, M, Tachiiri, K, Tokos, KS, Yoshimori, M, Zeng, N, and Zhao, F
- Abstract
This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. MostEMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6-6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs forRCPs 4.5-8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination ofCO2 emissions in allEMICs.Restoration of atmosphericCO2 fromRCPto preindustrial levels over 100-1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2. © 2013 American Meteorological Society.
- Published
- 2013
249. Anthropogenic perturbation of the carbon fluxes from land to ocean
- Author
-
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale, A.W., Gallego-Sala, A., Godderis, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D.E., Leifeld, J., Meysman, F.J.R., Munhoven, G., Raymond, P.A., Spahni, R., Suntharalingam, P., Thullner, M., Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale, A.W., Gallego-Sala, A., Godderis, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D.E., Leifeld, J., Meysman, F.J.R., Munhoven, G., Raymond, P.A., Spahni, R., Suntharalingam, P., and Thullner, M.
- Abstract
A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr(-1) since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (similar to 0.4 Pg C yr(-1)) or sequestered in sediments (similar to 0.5 Pg C yr(-1)) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of similar to 0.1 Pg C yr(-1) to the open ocean. According to our analysis, terrestrial ecosystems store similar to 0.9 Pg C yr(-1) at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr(-1) previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.
- Published
- 2013
250. Anthropogenic perturbation of the carbon fluxes from land to ocean
- Author
-
Bio-, hydro-, and environmental geochemistry, Geochemistry, Regnier, P., Friedlingstein, P., Ciais, P., MacKenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale, A.W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D.E., Leifeld, J., Meysman, F.J.R., Munhoven, G., Raymond, P.A., Spahni, R., Suntharalingam, P., Thullner, M., Bio-, hydro-, and environmental geochemistry, Geochemistry, Regnier, P., Friedlingstein, P., Ciais, P., MacKenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale, A.W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D.E., Leifeld, J., Meysman, F.J.R., Munhoven, G., Raymond, P.A., Spahni, R., Suntharalingam, P., and Thullner, M.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.