[ES] En tiempos recientes, el desarrollo de las redes sociales y de las agencias de noticias han traído nuevos retos y amenazas a la web. Estas amenazas han llamado la atención de la comunidad investigadora en Procesamiento del Lenguaje Natural (PLN) ya que están contaminando las plataformas de redes sociales. Un ejemplo de amenaza serían las noticias falsas, en las que los usuarios difunden y comparten información falsa, inexacta o engañosa. La información falsa no se limita a la información verificable, sino que también incluye información que se utiliza con fines nocivos. Además, uno de los desafíos a los que se enfrentan los investigadores es la gran cantidad de usuarios en las plataformas de redes sociales, donde detectar a los difusores de información falsa no es tarea fácil. Los trabajos previos que se han propuesto para limitar o estudiar el tema de la detección de información falsa se han centrado en comprender el lenguaje de la información falsa desde una perspectiva lingüística. En el caso de información verificable, estos enfoques se han propuesto en un entorno monolingüe. Además, apenas se ha investigado la detección de las fuentes o los difusores de información falsa en las redes sociales. En esta tesis estudiamos la información falsa desde varias perspectivas. En primer lugar, dado que los trabajos anteriores se centraron en el estudio de la información falsa en un entorno monolingüe, en esta tesis estudiamos la información falsa en un entorno multilingüe. Proponemos diferentes enfoques multilingües y los comparamos con un conjunto de baselines monolingües. Además, proporcionamos estudios sistemáticos para los resultados de la evaluación de nuestros enfoques para una mejor comprensión. En segundo lugar, hemos notado que el papel de la información afectiva no se ha investigado en profundidad. Por lo tanto, la segunda parte de nuestro trabajo de investigación estudia el papel de la información afectiva en la información falsa y muestra cómo los autores de contenido falso la emplean para manipular al lector. Aquí, investigamos varios tipos de información falsa para comprender la correlación entre la información afectiva y cada tipo (Propaganda, Trucos / Engaños, Clickbait y Sátira). Por último, aunque no menos importante, en un intento de limitar su propagación, también abordamos el problema de los difusores de información falsa en las redes sociales. En esta dirección de la investigación, nos enfocamos en explotar varias características basadas en texto extraídas de los mensajes de perfiles en línea de tales difusores. Estudiamos diferentes conjuntos de características que pueden tener el potencial de ayudar a discriminar entre difusores de información falsa y verificadores de hechos., [CA] En temps recents, el desenvolupament de les xarxes socials i de les agències de notícies han portat nous reptes i amenaces a la web. Aquestes amenaces han cridat l'atenció de la comunitat investigadora en Processament de Llenguatge Natural (PLN) ja que estan contaminant les plataformes de xarxes socials. Un exemple d'amenaça serien les notícies falses, en què els usuaris difonen i comparteixen informació falsa, inexacta o enganyosa. La informació falsa no es limita a la informació verificable, sinó que també inclou informació que s'utilitza amb fins nocius. A més, un dels desafiaments als quals s'enfronten els investigadors és la gran quantitat d'usuaris en les plataformes de xarxes socials, on detectar els difusors d'informació falsa no és tasca fàcil. Els treballs previs que s'han proposat per limitar o estudiar el tema de la detecció d'informació falsa s'han centrat en comprendre el llenguatge de la informació falsa des d'una perspectiva lingüística. En el cas d'informació verificable, aquests enfocaments s'han proposat en un entorn monolingüe. A més, gairebé no s'ha investigat la detecció de les fonts o els difusors d'informació falsa a les xarxes socials. En aquesta tesi estudiem la informació falsa des de diverses perspectives. En primer lloc, atès que els treballs anteriors es van centrar en l'estudi de la informació falsa en un entorn monolingüe, en aquesta tesi estudiem la informació falsa en un entorn multilingüe. Proposem diferents enfocaments multilingües i els comparem amb un conjunt de baselines monolingües. A més, proporcionem estudis sistemàtics per als resultats de l'avaluació dels nostres enfocaments per a una millor comprensió. En segon lloc, hem notat que el paper de la informació afectiva no s'ha investigat en profunditat. Per tant, la segona part del nostre treball de recerca estudia el paper de la informació afectiva en la informació falsa i mostra com els autors de contingut fals l'empren per manipular el lector. Aquí, investiguem diversos tipus d'informació falsa per comprendre la correlació entre la informació afectiva i cada tipus (Propaganda, Trucs / Enganys, Clickbait i Sàtira). Finalment, però no menys important, en un intent de limitar la seva propagació, també abordem el problema dels difusors d'informació falsa a les xarxes socials. En aquesta direcció de la investigació, ens enfoquem en explotar diverses característiques basades en text extretes dels missatges de perfils en línia de tals difusors. Estudiem diferents conjunts de característiques que poden tenir el potencial d'ajudar a discriminar entre difusors d'informació falsa i verificadors de fets., [EN] In the recent years, the development of social media and online news agencies has brought several challenges and threats to the Web. These threats have taken the attention of the Natural Language Processing (NLP) research community as they are polluting the online social media platforms. One of the examples of these threats is false information, in which false, inaccurate, or deceptive information is spread and shared by online users. False information is not limited to verifiable information, but it also involves information that is used for harmful purposes. Also, one of the challenges that researchers have to face is the massive number of users in social media platforms, where detecting false information spreaders is not an easy job. Previous work that has been proposed for limiting or studying the issue of detecting false information has focused on understanding the language of false information from a linguistic perspective. In the case of verifiable information, approaches have been proposed in a monolingual setting. Moreover, detecting the sources or the spreaders of false information in social media has not been investigated much. In this thesis we study false information from several aspects. First, since previous work focused on studying false information in a monolingual setting, in this thesis we study false information in a cross-lingual one. We propose different cross-lingual approaches and we compare them to a set of monolingual baselines. Also, we provide systematic studies for the evaluation results of our approaches for better understanding. Second, we noticed that the role of affective information was not investigated in depth. Therefore, the second part of our research work studies the role of the affective information in false information and shows how the authors of false content use it to manipulate the reader. Here, we investigate several types of false information to understand the correlation between affective information and each type (Propaganda, Hoax, Clickbait, Rumor, and Satire). Last but not least, in an attempt to limit its spread, we also address the problem of detecting false information spreaders in social media. In this research direction, we focus on exploiting several text-based features extracted from the online profile messages of those spreaders. We study different feature sets that can have the potential to help to identify false information spreaders from fact checkers.