201. Thermo-Hydrodynamics of a Helical Coil Heat Exchanger Operated with a Phase-Change Ice Slurry as a Refrigerant
- Author
-
Saiied M. Aminossadati, Christopher R. Leonardi, and A. Kamyar
- Subjects
Fluid Flow and Transfer Processes ,Pressure drop ,Materials science ,020209 energy ,Mechanical Engineering ,Laminar flow ,02 engineering and technology ,Mechanics ,Condensed Matter Physics ,Dean number ,Refrigerant ,020401 chemical engineering ,Heat exchanger ,Heat transfer ,0202 electrical engineering, electronic engineering, information engineering ,Slurry ,0204 chemical engineering ,Bingham plastic - Abstract
The thermal performance of helical-coil heat exchangers can be significantly enhanced when operated with ice slurry as a phase-change refrigerant. It is essential to also consider the hydrodynamics of ice slurry flow to determine the overall performance of the heat exchanger. This study presents a detailed numerical investigation of the thermo-hydrodynamic performance of a helical coil heat exchanger operated with a laminar and non-Newtonian flow of ethyl-alcohol ice slurry subject to phase change. The Bingham plastic model is used to reflect the non-Newtonian behavior of ice slurry. The phase change of ice slurry is modelled using the enthalpy-porosity method. The pressure drop and heat transfer of ice slurry in a double-turn helical coil are determined in terms of ice mass fraction and Dean number. The results show that an increase in the ice mass fraction and Dean number results in an increase of the heat transfer rate. This is, however, associated with an increase in pressure drop. The entropy generation analysis is introduced to evaluate the overall performance of the heat exchanger, taking into account the opposing effects of heat transfer and pressure drop. It is evident that, at certain ice mass fractions, there exists an optimal value of the Dean number that leads to minimum irreversibility and maximum overall performance.
- Published
- 2018
- Full Text
- View/download PDF