Tao Wu, Felipe Augusto Sodré, Christophe Tenailleau, Carole Rossi, Florent Sevely, Jérémy Cure, Alain Estève, Baptiste Julien, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), C. Rossi received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 832889 - PyroSafe)., Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)
To reduce the size inconvenience of airbag systems employed in human-body protection devices while maintaining comparable gas generation performance, a new family of gas-generating energetic compos- ites are proposed mixing Al/CuO nanothermite with copper complex (Cu(NH3 )4 (NO3 )2 ) known for its propensity to generate gases (0.03 mol/g) such as N2 , O2 , N2 O through exothermic chemical decomposi- tion (300 J/g). The aluminum (Al)/Copper oxide (CuO) couple, known as the most widely studied nanoma- terial for thermite reactions, releasing a high energy, mostly heat, through chemical reaction, is employed as a source of heat to trigger and sustain the decomposition of Cu(NH3 )4 (NO3 )2 complex. This work per- mits developing a new family of gas-generating energetic composites that takes advantage of specific chemical and thermal properties of both materials. We demonstrate its capability to tune the pressuriza- tion rate, burn rate and pressure peak by varying the Al/CuO over Cu(NH3 )(NO2 )2 mass ratio. The peak pressure of Cu(NH3 )4 (NO3 )2 /Al/CuO energetic composites reaches 12 MPa/g.cm3 in a close volume, which is 3.3 higher than that of traditional Al/CuO nanothermite. They achieve much longer high-pressure dura- tion ( ∼30 ms). They also exhibit very intense burning with velocity reaching hundreds of m/s in opening burning experiments. These new materials appear very promising for green gas generation.