794,347 results on '"A A, Alves"'
Search Results
202. The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Alex, N. S., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Choi, G., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hart, A. L., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Jung, K. Y., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lalău, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mukhamejanov, Y., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paixão, L. G. Porto, Potekhin, M., Potenza, R., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rahaman, U., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Razakamiandra, R. F., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, Diego, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Tiwari, S., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizarreta, R., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.
- Published
- 2024
203. A bilinear fractional integral operator for Euler-Riesz systems
- Author
-
Alves, Nuno J., Grafakos, Loukas, and Tzavaras, Athanasios E.
- Subjects
Mathematics - Analysis of PDEs ,42B20, 42B37, 35Q35 - Abstract
We establish a uniform estimate for a bilinear fractional integral operator via restricted weak-type endpoint estimates and Marcinkiewicz interpolation. This estimate is crucial in the integrability analysis of a tensor-valued bilinear fractional integral operator associated with Euler-Riesz systems modeling mean-field interactions induced by a singular kernel. The tensorial operator arises from a reformulation of the Euler-Riesz system that yields a gain in integrability for finite energy solutions through compensated integrability. Additionally, for smooth periodic solutions of the reformulated system, we derive a stability result.
- Published
- 2024
204. An Analysis of Minimum Error Entropy Loss Functions in Wireless Communications
- Author
-
Pallewela, Rumeshika, Eldeeb, Eslam, and Alves, Hirley
- Subjects
Computer Science - Information Theory ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Signal Processing - Abstract
This paper introduces the minimum error entropy (MEE) criterion as an advanced information-theoretic loss function tailored for deep learning applications in wireless communications. The MEE criterion leverages higher-order statistical properties, offering robustness in noisy scenarios like Rayleigh fading and impulsive interference. In addition, we propose a less computationally complex version of the MEE function to enhance practical usability in wireless communications. The method is evaluated through simulations on two critical applications: over-the-air regression and indoor localization. Results indicate that the MEE criterion outperforms conventional loss functions, such as mean squared error (MSE) and mean absolute error (MAE), achieving significant performance improvements in terms of accuracy, over $20 \%$ gain over traditional methods, and convergence speed across various channel conditions. This work establishes MEE as a promising alternative for wireless communication tasks in deep learning models, enabling better resilience and adaptability.
- Published
- 2024
205. Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems
- Author
-
Chenaud, Marien, Magoulès, Frédéric, and Alves, José
- Subjects
Mathematics - Numerical Analysis ,Computer Science - Machine Learning - Abstract
The recent rise of deep learning has led to numerous applications, including solving partial differential equations using Physics-Informed Neural Networks. This approach has proven highly effective in several academic cases. However, their lack of physical invariances, coupled with other significant weaknesses, such as an inability to handle complex geometries or their lack of generalization capabilities, make them unable to compete with classical numerical solvers in industrial settings. In this work, a limitation regarding the use of automatic differentiation in the context of physics-informed learning is highlighted. A hybrid approach combining physics-informed graph neural networks with numerical kernels from finite elements is introduced. After studying the theoretical properties of our model, we apply it to complex geometries, in two and three dimensions. Our choices are supported by an ablation study, and we evaluate the generalisation capacity of the proposed approach.
- Published
- 2024
- Full Text
- View/download PDF
206. Strong convergence of sequences with vanishing relative entropy
- Author
-
Alves, Nuno J., Skrzeczkowski, Jakub, and Tzavaras, Athanasios E.
- Subjects
Mathematics - Analysis of PDEs ,35B40, 28A20, 49J45, 46N10 - Abstract
We show that under natural growth conditions on the entropy function, convergence in relative entropy is equivalent to $L_p$-convergence. The main tool is the theory of Young measures, in a form that accounts for the formation of concentrations in weak limits.
- Published
- 2024
207. Offline and Distributional Reinforcement Learning for Radio Resource Management
- Author
-
Eldeeb, Eslam and Alves, Hirley
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Multiagent Systems - Abstract
Reinforcement learning (RL) has proved to have a promising role in future intelligent wireless networks. Online RL has been adopted for radio resource management (RRM), taking over traditional schemes. However, due to its reliance on online interaction with the environment, its role becomes limited in practical, real-world problems where online interaction is not feasible. In addition, traditional RL stands short in front of the uncertainties and risks in real-world stochastic environments. In this manner, we propose an offline and distributional RL scheme for the RRM problem, enabling offline training using a static dataset without any interaction with the environment and considering the sources of uncertainties using the distributions of the return. Simulation results demonstrate that the proposed scheme outperforms conventional resource management models. In addition, it is the only scheme that surpasses online RL with a 10 % gain over online RL.
- Published
- 2024
208. Simulating radio emission from particle cascades with CORSIKA 8
- Author
-
Alameddine, J. M., Albrecht, J., Ammerman-Yebra, J., Arrabito, L., Alves Jr., A. A., Baack, D., Coleman, A., Dembinski, H., Elsässer, D., Engel, R., Faure, A., Ferrari, A., Gaudu, C., Glaser, C., Gottowik, M., Heck, D., Huege, T., Kampert, K. H., Karastathis, N., Nellen, L., Pierog, T., Prechelt, R., Reininghaus, M., Rhode, W., Riehn, F., Sackel, M., Sampathkumar, P., Sandrock, A., Soedingrekso, J., and Ulrich, R.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
CORSIKA 8 is a new framework for simulations of particle cascades in air and dense media implemented in modern C++17, based on past experience with existing codes, in particular CORSIKA 7. The flexible and modular structure of the project allows the development of independent modules that can produce a fully customizable particle shower simulation. The radio module in particular is designed to treat the electric field calculation and its propagation through complex media to each observer location in an autonomous and flexible way. It already allows for the simultaneous simulation of the radio emission calculated with two independent time-domain formalisms, the "Endpoint formalism" as previously implemented in CoREAS and the "ZHS" algorithm as ported from ZHAireS. The design acts as the baseline interface for current and future development for the simulation of radio emission from particle showers in standard and complex scenarios, such as cross-media showers penetrating from air into ice. In this work, we present the design and implementation of the radio module in CORSIKA 8, along with validation studies and a direct comparison of the radio emission from air showers simulated with CORSIKA 8, CORSIKA 7 and ZHAireS. We also present the impact of simulation details such as the step size of simulated particle tracks on radio-emission simulations and perform a direct comparison of the "Endpoints" and "ZHS" formalisms for the same underlying air showers. Finally, we present an in-depth comparison of CORSIKA 8 and CORSIKA 7 for optimum simulation settings and discuss the relevance of observed differences in light of reconstruction efforts for the energy and mass of cosmic rays., Comment: 17 pages
- Published
- 2024
- Full Text
- View/download PDF
209. On the Spectral Efficiency of D-MIMO Networks under Rician Fading
- Author
-
Tominaga, Eduardo Noboro, López, Onel Luis Alcaraz, Svensson, Tommy, Souza, Richard Demo, and Alves, Hirley
- Subjects
Computer Science - Information Theory ,Electrical Engineering and Systems Science - Signal Processing - Abstract
Contemporary wireless communications systems adopt the Multi-User Multiple-Input Multiple-Output (MU-MIMO) technique: a single base station or Access Point (AP) equipped with multiple antenna elements serves multiple active users simultaneously. Aiming at providing a more uniform wireless coverage, industry and academia have been working towards the evolution from centralized MIMO to Distributed-MIMO. That is, instead of having all the antenna elements co-located at a single AP, multiple APs, each equipped with a few or a single antenna element, jointly cooperate to serve the active users in the coverage area. In this work, we evaluate the performance of different D-MIMO setups under Rician fading, and considering different receive combining schemes. Note that the Rician fading model is convenient for MU-MIMO performance assessment, as it encompasses a wide variety of scenarios. Our numerical results show that the correlation among the channel vectors of different users increases with the Rician factor, which leads to a reduction on the achievable Spectral Efficiency (SE). Moreover, given a total number of antenna elements, there is an optimal number of APs and antenna elements per AP that provides the best performance. This "sweet spot" depends on the Rician factor and on the adopted receive combining scheme., Comment: 6 pages, 6 figures. Manuscript submitted to the IEEE Wireless Communications and Networking Conference (WCNC), Milan, Italy, 2025. arXiv admin note: text overlap with arXiv:2406.19078
- Published
- 2024
210. Predicting soccer matches with complex networks and machine learning
- Author
-
Baratela, Eduardo Alves, Xavier, Felipe Jordão, Peron, Thomas, Villas-Boas, Paulino Ribeiro, and Rodrigues, Francisco Aparecido
- Subjects
Computer Science - Social and Information Networks ,Computer Science - Machine Learning ,Statistics - Applications ,Statistics - Machine Learning - Abstract
Soccer attracts the attention of many researchers and professionals in the sports industry. Therefore, the incorporation of science into the sport is constantly growing, with increasing investments in performance analysis and sports prediction industries. This study aims to (i) highlight the use of complex networks as an alternative tool for predicting soccer match outcomes, and (ii) show how the combination of structural analysis of passing networks with match statistical data can provide deeper insights into the game patterns and strategies used by teams. In order to do so, complex network metrics and match statistics were used to build machine learning models that predict the wins and losses of soccer teams in different leagues. The results showed that models based on passing networks were as effective as ``traditional'' models, which use general match statistics. Another finding was that by combining both approaches, more accurate models were obtained than when they were used separately, demonstrating that the fusion of such approaches can offer a deeper understanding of game patterns, allowing the comprehension of tactics employed by teams relationships between players, their positions, and interactions during matches. It is worth mentioning that both network metrics and match statistics were important and impactful for the mixed model. Furthermore, the use of networks with a lower granularity of temporal evolution (such as creating a network for each half of the match) performed better than a single network for the entire game., Comment: To appear in Journal of Complex Networks
- Published
- 2024
211. A relative-error inexact ADMM splitting algorithm for convex optimization with inertial effects
- Author
-
Alves, M. Marques and Geremia, M.
- Subjects
Mathematics - Optimization and Control - Abstract
We propose a new relative-error inexact version of the alternating direction method of multipliers (ADMM) for convex optimization. We prove the asymptotic convergence of our main algorithm as well as pointwise and ergodic iteration-complexities for residuals. We also justify the effectiveness of the proposed algorithm through some preliminary numerical experiments on regression problems., Comment: To appear in Communications in Optimization Theory; 28 pages
- Published
- 2024
212. Low surface brightness dwarf galaxies and their globular cluster populations around the low-density environment of our closest S0 NGC3115
- Author
-
Canossa-Gosteinski, Marco A., Chies-Santos, Ana L., Furlanetto, Cristina, Bonatto, Charles J., Flores-Freitas, Rodrigo, Schoenell, William, Beasley, Michael A., Overzier, Roderik, Santiago, Basilio X., Pieres, Adriano, Zanatta, Emílio J. B., Alamo-Martinez, Karla A., Balbinot, Eduardo, Queiroz, Anna B. A., and Alves-Brito, Alan
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Understanding faint dwarf galaxies is fundamental to the development of a robust theory of galaxy formation on small scales. Since the discovery of a population of ultra diffuse galaxies (UDGs) rich in globular clusters (GCs) in Coma, an increasing number of studies on low surface brightness dwarf galaxies (LSBds) have been published in recent years. The most massive LSBds have been observed predominantly in groups and clusters, with properties displaying dependence on the environment. In this work, we use deep DECam imaging to systematically identify LSBds and their GC populations around the low-density environment of NGC 3115. We carefully analyse the structure and morphology of 24 candidates, 18 of which are reported for the first time. Most candidates exhibit red colours suggesting a connection between their colour and distance to NGC 3115. We followed up with Gemini GMOS imaging 9 LSBds to properly identify their GC populations. We derive lower limits for the number of GCs associated with each galaxy. Our analysis reveals that they occur around of the same loci of Fornax LSB dwarf GC systems. The relationship between the number of GCs and total mass provides a tool in which, by counting the GCs in these galaxies, we estimate an upper limit for the total mass of these LSB dwarfs, obtaining the mean value of $\sim 3.3\times10^{10}$ M$_{\odot}$. Our results align with expectations for dwarf-sized galaxies, particularly regarding the distribution and specific frequency of their GC systems., Comment: 25 pages, 22 figures, accepted for publication in MNRAS
- Published
- 2024
213. Measuring the weak mixing angle at SBND
- Author
-
Alves, Gustavo F. S., Ferreira, Antonio P., Li, Shirley Weishi, Machado, Pedro A. N., and Perez-Gonzalez, Yuber F.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment - Abstract
The weak mixing angle provides a sensitive test of the Standard Model. We study SBND's sensitivity to the weak mixing angle using neutrino-electron scattering events. We perform a detailed simulation, paying particular attention to background rejection and estimating the detector response. We find that SBND can provide a reasonable constraint on the weak mixing angle, achieving 8% precision for $10^{21}$ protons on target, assuming an overall flux normalization uncertainty of 10%. This result is superior to those of current neutrino experiments and is relatively competitive with other low-energy measurements., Comment: 9 pages, 9 figures
- Published
- 2024
214. Photonic bands and normal mode splitting in optical lattices interacting with cavities
- Author
-
Courteille, Philippe Wilhelm, Rivero, Dalila, de França, Gustavo Henrique, Junior, Claudio Alves Pessoa, Cipris, Ana, Portela, Mayerlin Núñez, Teixeira, Raul Celistrino, and Slama, Sebastian
- Subjects
Quantum Physics ,Physics - Atomic Physics ,Physics - Optics - Abstract
Strong collective interaction of atoms with an optical cavity causes normal mode splitting of the cavity's resonances, whose width is given by the collective coupling strength. At low optical density of the atomic cloud the intensity distribution of light in the cavity is ruled by the cavity's mode function, which is solely determined by its geometry. In this regime the dynamics of the coupled atom-cavity system is conveniently described by the open Dicke model, which we apply to calculating normal mode splitting generated by periodically ordered clouds in linear and ring cavities. We also show how to use normal mode splitting as witness for Wannier-Bloch oscillations in the tight-binding limit. At high optical density the atomic distribution contributes to shaping the mode function. This regime escapes the open Dicke model, but can be treated by a transfer matrix model provided the saturation parameter is low. Applying this latter model to an atomic cloud periodically ordered into a one-dimensional lattice, we observe the formation of photonic bands gaps competing with the normal mode splitting. We discuss the limitations of both models and point out possible pathways to generalized theories., Comment: 10 pages, 14 figures
- Published
- 2024
215. Citizen-Led Personalization of User Interfaces: Investigating How People Customize Interfaces for Themselves and Others
- Author
-
Alves, Sérgio, Costa, Ricardo, Montague, Kyle, and Guerreiro, Tiago
- Subjects
Computer Science - Human-Computer Interaction - Abstract
User interface (UI) personalization can improve usability and user experience. However, current systems offer limited opportunities for customization, and third-party solutions often require significant effort and technical skills beyond the reach of most users, impeding the future adoption of interface personalization. In our research, we explore the concept of UI customization for the self and others. We performed a two-week study where nine participants used a custom-designed tool that allows websites' UI customization for oneself and to create and reply to customization assistance requests from others. Results suggest that people enjoy customizing for others more than for themselves. They see requests as challenges to solve and are motivated by the positive feeling of helping others. To customize for themselves, people need help with the creative process. We discuss challenges and opportunities for future research seeking to democratize access to personalized UIs, particularly through community-based approaches.
- Published
- 2024
- Full Text
- View/download PDF
216. Machine Learning for Chemistry Reduction in N$_2$-H$_2$ Low-Temperature Plasmas
- Author
-
Ferreira, Diogo R., Lança, Alexandre, and Alves, Luís Lemos
- Subjects
Physics - Plasma Physics - Abstract
Low-temperature plasmas are partially ionized gases, where ions and neutrals coexist in a highly reactive environment. This creates a rich chemistry, which is often difficult to understand in its full complexity. In this work, we develop a machine learning model to identify the most important reactions in a given chemical scheme. The training data are an initial distribution of species and a final distribution of species, which can be obtained from either experiments or simulations. The model is trained to provide a set of reaction weights, which become the basis for reducing the chemical scheme. The approach is applied to N$_2$-H$_2$ plasmas, created by an electric discharge at low pressure, where the main goal is to produce NH$_3$. The interplay of multiple species, as well as of volume and surface reactions, make this chemistry especially challenging to understand. Reducing the chemical scheme via the proposed model helps identify the main chemical pathways.
- Published
- 2024
217. Mass Reconstruction of Heavy Neutral Leptons from Stopped Mesons
- Author
-
Alves, Gustavo F. S., Dev, P. S. Bhupal, Kelly, Kevin J., and Machado, Pedro A. N.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment - Abstract
Heavy neutral leptons (HNLs), depending on their mass and mixing, can be efficiently produced in meson decays from the target or absorber in short- to medium-baseline accelerator neutrino experiments, leaving detectable signals through their decays inside the neutrino detectors. We show that the currently running ICARUS experiment at Fermilab can reconstruct the HNL mass and explore new HNL parameter space in the mass range of 70-190 MeV. The mass reconstruction is enabled by two ingredients: (i) simple two-body kinematics of HNL production from stopped kaon decays at the NuMI absorber, followed by HNL decay into a charged-lepton pair and neutrino at the detector, and (ii) high resolution of Liquid Argon Time Projection Chamber (LArTPC) detectors in reconstructing final state particles. Our mass reconstruction method is robust under realistic energy resolution and angular smearing of the charged leptons, and is applicable to any LArTPC detector. We also discuss the synergy between ICARUS and future facilities like DUNE near detector and PIP-II beam dump in probing the HNL parameter space., Comment: 14 pages, 6 figures, 1 table
- Published
- 2024
218. The Giant Radio Array for Neutrino Detection (GRAND) Collaboration -- Contributions to the 10th International Workshop on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2024)
- Author
-
Batista, Rafael Alves, Benoit-Lévy, Aurélien, Bister, Teresa, Bohacova, Martina, Bustamante, Mauricio, Carvalho, Washington, Chen, Yiren, Cheng, LingMei, Chiche, Simon, Colley, Jean-Marc, Correa, Pablo, Laurenciu, Nicoleta Cucu, Dai, Zigao, de Almeida, Rogerio M., de Errico, Beatriz, de Jong, Sijbrand, Neto, João R. T. de Mello, de Vries, Krijn D, Decoene, Valentin, Denton, Peter B., Duan, Bohao, Duan, Kaikai, Engel, Ralph, Erba, William, Fan, Yizhong, Ferrière, Arsène, Gou, QuanBu, Gu, Junhua, Guelfand, Marion, Guo, Jianhua, Guo, Yiqing, Guépin, Claire, Gülzow, Lukas, Haungs, Andreas, Havelka, Matej, He, Haoning, Hivon, Eric, Hu, Hongbo, Huang, Xiaoyuan, Huang, Yan, Huege, Tim, Jiang, Wen, Koirala, Ramesh, Kong, ChuiZheng, Kotera, Kumiko, Köhler, Jelena, Lago, Bruno L., Lai, Zhisen, Coz, Sandra Le, Legrand, François, Leisos, Antonios, Li, Rui, Li, Xingyu, Li, YiFei, Liu, Cheng, Liu, Ruoyu, Liu, Wei, Ma, Pengxiong, Macias, Oscar, Magnard, Frédéric, Marcowith, Alexandre, Martineau-Huynh, Olivier, McKinley, Thomas, Minodier, Paul, Mitra, Pragati, Mostafá, Miguel, Murase, Kohta, Niess, Valentin, Nonis, Stavros, Ogio, Shoichi, Oikonomou, Foteini, Pan, Hongwei, Papageorgiou, Konstantinos, Pierog, Tanguy, Piotrowski, Lech Wiktor, Prunet, Simon, Qian, Xiangli, Roth, Markus, Sako, Takashi, Schoorlemmer, Harm, Szálas-Motesiczky, Dániel, Sławiński, Szymon, Tian, Xishui, Timmermans, Anne, Timmermans, Charles, Tobiska, Petr, Tsirigotis, Apostolos, Tueros, Matías, Vittakis, George, Wang, Hanrui, Wang, Jiale, Wang, Shen, Wang, Xiangyu, Wang, Xu, Wei, Daming, Wei, Feng, Wu, Xiangping, Wu, Xuefeng, Xu, Xin, Xu, Xing, Yang, Fufu, Yang, Lili, Yang, Xuan, Yuan, Qiang, Zarka, Philippe, Zeng, Houdun, Zhang, Chao, Zhang, Jianli, Zhang, Kewen, Zhang, Pengfei, Zhang, Qingchi, Zhang, Songbo, Zhang, Yi, Zhou, Hao, Wissel, Stephanie, Zeolla, Andrew, Deaconu, Cosmin, Hughes, Kaeli, Martin, Zachary, Mulrey, Katharine, Cummings, Austin, Krömer, Oliver, Plant, Kathryn, and Schroeder, Frank G.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
This is an index of the contributions by the Giant Radio Array for Neutrino Detection (GRAND) Collaboration to the 10th International Workshop on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2024, University of Chicago, June 11-14, 2024). The contributions include an overview of GRAND in its present and future incarnations, methods of radio-detection that are being developed for them, and ongoing joint work between the GRAND and BEACON experiments., Comment: Note: To access the list of contributions, please follow the "HTML" link that can be found on the arXiv page
- Published
- 2024
219. Standing on the shoulders of giants
- Author
-
Cardoso, Lucas Felipe Ferraro, Filho, José de Sousa Ribeiro, Santos, Vitor Cirilo Araujo, Frances, Regiane Silva Kawasaki, and Alves, Ronnie Cley de Oliveira
- Subjects
Computer Science - Machine Learning ,Statistics - Machine Learning ,I.2.6 - Abstract
Although fundamental to the advancement of Machine Learning, the classic evaluation metrics extracted from the confusion matrix, such as precision and F1, are limited. Such metrics only offer a quantitative view of the models' performance, without considering the complexity of the data or the quality of the hit. To overcome these limitations, recent research has introduced the use of psychometric metrics such as Item Response Theory (IRT), which allows an assessment at the level of latent characteristics of instances. This work investigates how IRT concepts can enrich a confusion matrix in order to identify which model is the most appropriate among options with similar performance. In the study carried out, IRT does not replace, but complements classical metrics by offering a new layer of evaluation and observation of the fine behavior of models in specific instances. It was also observed that there is 97% confidence that the score from the IRT has different contributions from 66% of the classical metrics analyzed., Comment: 15 pages, 8 figures, 3 tables, submitted for the BRACIS'24 conference
- Published
- 2024
220. Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification
- Author
-
Eldeeb, Eslam, Shehab, Mohammad, Alves, Hirley, and Alouini, Mohamed-Slim
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Semantic and goal-oriented (SGO) communication is an emerging technology that only transmits significant information for a given task. Semantic communication encounters many challenges, such as computational complexity at end users, availability of data, and privacy-preserving. This work presents a TinyML-based semantic communication framework for few-shot wireless image classification that integrates split-learning and meta-learning. We exploit split-learning to limit the computations performed by the end-users while ensuring privacy-preserving. In addition, meta-learning overcomes data availability concerns and speeds up training by utilizing similarly trained tasks. The proposed algorithm is tested using a data set of images of hand-written letters. In addition, we present an uncertainty analysis of the predictions using conformal prediction (CP) techniques. Simulation results show that the proposed Semantic-MSL outperforms conventional schemes by achieving 20 % gain on classification accuracy using fewer data points, yet less training energy consumption.
- Published
- 2024
221. Targeting 100-PeV tau neutrino detection with an array of phased and high-gain reconstruction antennas
- Author
-
Wissel, Stephanie, Zeolla, Andrew, Deaconu, Cosmin, Decoene, Valentin, Hughes, Kaeli, Martin, Zachary, Mulrey, Katharine, Cummings, Austin, Batista, Rafael Alves, Benoit-Lévy, Aurélien, Bustamante, Mauricio, Correa, Pablo, Ferrière, Arsène, Guelfand, Marion, Huege, Tim, Kotera, Kumiko, Martineau, Olivier, Murase, Kohta, Niess, Valentin, Zhang, Jianli, Krömer, Oliver, Plant, Kathryn, and Schroeder, Frank G.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment - Abstract
Neutrinos at ultrahigh energies can originate both from interactions of cosmic rays at their acceleration sites and through cosmic-ray interactions as they propagate through the universe. These neutrinos are expected to have a low flux which drives the need for instruments with large effective areas. Radio observations of the inclined air showers induced by tau neutrino interactions in rock can achieve this, because radio waves can propagate essentially unattenuated through the hundreds of kilometers of atmosphere. Proposed arrays for radio detection of tau neutrinos focus on either arrays of inexpensive receivers distributed over a large area, the GRAND concept, or compact phased arrays on elevated mountains, the BEACON concept, to build up a large detector area with a low trigger threshold. We present a concept that combines the advantages of these two approaches with a trigger driven by phased arrays at a moderate altitude (1 km) and sparse, high-gain outrigger receivers for reconstruction and background rejection. We show that this design has enhanced sensitivity at 100 PeV over the two prior designs with fewer required antennas and discuss the need for optimized antenna designs., Comment: ARENA2024 Conference Proceeding PoS(ARENA2024)058
- Published
- 2024
222. Accelerating Graph Neural Networks with a Novel Matrix Compression Format
- Author
-
Alves, João N. F., Moustafa, Samir, Benkner, Siegfried, Francisco, Alexandre P., Gansterer, Wilfried N., and Russo, Luís M. S.
- Subjects
Computer Science - Data Structures and Algorithms - Abstract
The inference and training stages of Graph Neural Networks (GNNs) are often dominated by the time required to compute a long sequence of matrix multiplications between the sparse graph adjacency matrix and its embedding. To accelerate these stages, we first propose the Compressed Binary Matrix (CBM) storage format to succinctly represent the binary adjacency matrix of an unweighted graph. Then, we show how to generalize this representation to normalized adjacency matrices of unweighted graphs which arise in the context of GNNs. Finally, we develop efficient matrix multiplication kernels based on this compressed representation. The matrix multiplication kernels proposed in this work never require more scalar operations than classic sparse matrix multiplication algorithms. Experimental evaluation shows that the matrix multiplication strategies proposed outperform the current state-of-the-art implementations provided by Intel MKL, achieving speedups close to 5$\times$. Furthermore, our optimized matrix-multiplication strategies accelerated the inference time of a GNN by up to $3\times$.
- Published
- 2024
223. The MICADO first light imager for the ELT: overview and current Status
- Author
-
Sturm, E., Davies, R., Alves, J., Clénet, Y., Kotilainen, J., Monna, A., Nicklas, H., Pott, J. -U., Tolstoy, E., Vulcani, B., Achren, J., Annadevara, S., Anwand-Heerwart, H., Arcidiacono, C., Barboza, S., Barl, L., Baudoz, P., Bender, R., Bezawada, N., Biondi, F., Bizenberger, P., Blin, A., Boné, A., Bonifacio, P., Borgo, B., Born, J. van den, Buey, T., Cao, Y., Chapron, F., Chauvin, G., Chemla, F., Cloiseau, K., Cohen, M., Collin, C., Czoske, O., Dette, J. -O., Deysenroth, M., Dijkstra, E., Dreizler, S., Dupuis, O., van Egmond, G., Eisenhauer, F., Elswijk, E., Emslander, A., Fabricius, M., Fasola, G., Ferreira, F., Schreiber, N. M. Förster, Fontana, A., Gaudemard, J., Gautherot, N., Gendron, E., Gennet, C., Genzel, R., Ghouchou, L., Gillessen, S., Gratadour, D., Grazian, A., Grupp, F., Guieu, S., Gullieuszik, M., de Haan, M., Hartke, J., Hartl, M., Haussmann, F., Helin, T., Hess, H. -J., Hofferbert, R., Huber, H., Huby, E., Huet, J. -M., Ives, D., Janssen, A., Jaufmann, P., Jilg, T., Jodlbauer, D., Jost, J., Kausch, W., Kellermann, H., Kerber, F., Kravcar, H., Kravchenko, K., Kulcsár, C., Kunkarayakti, H., Kunst, P., Kwast, S., Lang, F., Lange, J., Lapeyrere, V., Ruyet, B. Le, Leschinski, K., Locatelli, H., Massari, D., Mattila, S., Mei, S., Merlin, F., Meyer, E., Michel, C., Mohr, L., Montargès, M., Müller, F., Münch, N., Navarro, R., Neumann, U., Neumayer, N., Neumeier, L., Pedichini, F., Pflüger, A., Piazzesi, R., Pinard, L., Porras, J., Portaluri, E., Przybilla, N., Rabien, S., Raffard, J., Raggazoni, R., Ramlau, R., Ramos, J., Ramsay, S., Raynaud, H. -F., Rhode, P., Richter, A., Rix, H. -W., Rodenhuis, M., Rohloff, R. -R., Romp, R., Rousselot, P., Sabha, N., Sassolas, B., Schlichter, J., Schuil, M., Schweitzer, M., Seemann, U., Sevin, A., Simioni, M., Spallek, L., Sönmez, A., Suuronen, J., Taburet, S., Thomas, J., Tisserand, E., Vaccari, P., Valenti, E., Kleijn, G. Verdoes, Verdugo, M., Vidal, F., Wagner, R., Wegner, M., van Winden, D., Witschel, J., Zanella, A., Zeilinger, W., Ziegleder, J., and Ziegler, B.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
MICADO is a first light instrument for the Extremely Large Telescope (ELT), set to start operating later this decade. It will provide diffraction limited imaging, astrometry, high contrast imaging, and long slit spectroscopy at near-infrared wavelengths. During the initial phase operations, adaptive optics (AO) correction will be provided by its own natural guide star wavefront sensor. In its final configuration, that AO system will be retained and complemented by the laser guide star multi-conjugate adaptive optics module MORFEO (formerly known as MAORY). Among many other things, MICADO will study exoplanets, distant galaxies and stars, and investigate black holes, such as Sagittarius A* at the centre of the Milky Way. After their final design phase, most components of MICADO have moved on to the manufacturing and assembly phase. Here we summarize the final design of the instrument and provide an overview about its current manufacturing status and the timeline. Some lessons learned from the final design review process will be presented in order to help future instrumentation projects to cope with the challenges arising from the substantial differences between projects for 8-10m class telescopes (e.g. ESO-VLT) and the next generation Extremely Large Telescopes (e.g. ESO-ELT). Finally, the expected performance will be discussed in the context of the current landscape of astronomical observatories and instruments. For instance, MICADO will have similar sensitivity as the James Webb Space Telescope (JWST), but with six times the spatial resolution., Comment: Proceedings of the SPIE, Volume 13096, id. 1309611 11 pp. (2024)
- Published
- 2024
- Full Text
- View/download PDF
224. Hints of a sulfur-rich atmosphere around the 1.6 R$_{\oplus}$ Super-Earth L98-59 d from JWST NIRSpec G395H transmission spectroscopy
- Author
-
Gressier, Amélie, Espinoza, Néstor, Allen, Natalie H., Sing, David K., Banerjee, Agnibha, Barstow, Joanna K., Valenti, Jeff A., Lewis, Nikole K., Birkmann, Stephan M., Challener, Ryan C., Manjavacas, Elena, de Oliveira, Catarina Alves, Crouzet, Nicolas, and Beck, Tracy. L
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Detecting atmospheres around planets with a radius below 1.6 R$_{\oplus}$, commonly referred to as rocky planets (Rogers_2015, Rogers_2021), has proven to be challenging. However, rocky planets orbiting M-dwarfs are ideal candidates due to their favorable planet-to-star radius ratio. Here, we present one transit observation of the Super-Earth L98-59d (1.58 R$_{\oplus}$, 2.31 M$_{\oplus}$), at the limit of rocky/gas-rich, using the JWST NIRSpec G395H mode covering the 2.8 to 5.1 microns wavelength range. The extracted transit spectrum from a single transit observation deviates from a flat line by 2.6 to 5.6$\sigma$, depending on the data reduction and retrieval setup. The hints of an atmospheric detection are driven by a large absorption feature between 3.3 to 4.8 microns. A stellar contamination retrieval analysis rejected the source of this feature as being due to stellar inhomogeneities, making the best fit an atmospheric model including sulfur-bearing species, suggesting that the atmosphere of L98-59d may not be at equilibrium. This result will need to be confirmed by the analysis of the second NIRSpec G395H visit in addition to the NIRISS SOSS transit observation., Comment: Accepted for publication in the Astrophysical Journal Letters (ApJL), August 25, 2024
- Published
- 2024
- Full Text
- View/download PDF
225. Towards Lifelong Learning Embeddings: An Algorithmic Approach to Dynamically Extend Embeddings
- Author
-
Gomes, Miguel Alves, Meisen, Philipp, and Meisen, Tobias
- Subjects
Computer Science - Machine Learning ,Computer Science - Information Retrieval - Abstract
The rapid evolution of technology has transformed business operations and customer interactions worldwide, with personalization emerging as a key opportunity for e-commerce companies to engage customers more effectively. The application of machine learning, particularly that of deep learning models, has gained significant traction due to its ability to rapidly recognize patterns in large datasets, thereby offering numerous possibilities for personalization. These models use embeddings to map discrete information, such as product IDs, into a latent vector space, a method increasingly popular in recent years. However, e-commerce's dynamic nature, characterized by frequent new product introductions, poses challenges for these embeddings, which typically require fixed dimensions and inputs, leading to the need for periodic retraining from scratch. This paper introduces a modular algorithm that extends embedding input size while preserving learned knowledge, addressing the challenges posed by e-commerce's dynamism. The proposed algorithm also incorporates strategies to mitigate the cold start problem associated with new products. The results of initial experiments suggest that this method outperforms traditional embeddings., Comment: Accepted Extended Abstract for 3rd Workshop on End-End Customer Journey Optimization at KDD2024, Barcelona, Spain
- Published
- 2024
226. Avatar Visual Similarity for Social HCI: Increasing Self-Awareness
- Author
-
Hilpert, Bernhard, da Silva, Claudio Alves, Christidis, Leon, Bhuvaneshwara, Chirag, Gebhard, Patrick, Nunnari, Fabrizio, and Tsovaltzi, Dimitra
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Artificial Intelligence - Abstract
Self-awareness is a critical factor in social human-human interaction and, hence, in social HCI interaction. Increasing self-awareness through mirrors or video recordings is common in face-to-face trainings, since it influences antecedents of self-awareness like explicit identification and implicit affective identification (affinity). However, increasing self-awareness has been scarcely examined in virtual trainings with virtual avatars, which allow for adjusting the similarity, e.g. to avoid negative effects of self-consciousness. Automatic visual similarity in avatars is an open issue related to high costs. It is important to understand which features need to be manipulated and which degree of similarity is necessary for self-awareness to leverage the added value of using avatars for self-awareness. This article examines the relationship between avatar visual similarity and increasing self-awareness in virtual training environments. We define visual similarity based on perceptually important facial features for human-human identification and develop a theory-based methodology to systematically manipulate visual similarity of virtual avatars and support self-awareness. Three personalized versions of virtual avatars with varying degrees of visual similarity to participants were created (weak, medium and strong facial features manipulation). In a within-subject study (N=33), we tested effects of degree of similarity on perceived similarity, explicit identification and implicit affective identification (affinity). Results show significant differences between the weak similarity manipulation, and both the strong manipulation and the random avatar for all three antecedents of self-awareness. An increasing degree of avatar visual similarity influences antecedents of self-awareness in virtual environments.
- Published
- 2024
227. DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D. M., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Barham~Alzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cortez, A. F. V., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Fernández-Posada, D., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., M~Gago, A., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hart, A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Hernández-García, J., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kuźniak, M., Kvasnicka, J., Labree, T., Lackey, T., Lalău, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., -Y~Li, J., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Gann, G. D. Orebi, Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paix{ã}o, L. G. Porto, Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Diego~Restrepo, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ruiz, G., Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Seo, S. H., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.
- Published
- 2024
228. From curve shortening to flat link stability and Birkhoff sections of geodesic flows
- Author
-
Alves, Marcelo R. R. and Mazzucchelli, Marco
- Subjects
Mathematics - Dynamical Systems ,Mathematics - Differential Geometry ,Mathematics - Symplectic Geometry ,53C22, 37D40, 53E10, 53D25 - Abstract
We employ the curve shortening flow to establish three new results on the dynamics of geodesic flows of closed Riemannian surfaces. The first one is the stability, under $C^0$-small perturbations of the Riemannian metric, of certain flat links of closed geodesics. The second one is a forced existence theorem for orientable closed Riemannian surfaces: for surfaces of positive genus, the existence of a contractible simple closed geodesic $\gamma$ forces the existence of infinitely many closed geodesics intersecting $\gamma$ in every primitive free homotopy class of loops; for the 2-sphere, the existence of two disjoint simple closed geodesics forces the existence of a third one intersecting both. The final result asserts the existence of Birkhoff sections for the geodesic flow of any closed orientable Riemannian surface., Comment: 48 pages, 9 figures; version 2: the existence of Birkhoff sections (Theorem D) now holds for all closed orientable Riemannian surfaces, including spheres
- Published
- 2024
229. Extending the Quantitative Pattern-Matching Paradigm
- Author
-
Alves, Sandra, Kesner, Delia, and Ramos, Miguel
- Subjects
Computer Science - Programming Languages ,Computer Science - Logic in Computer Science ,D.3.1 ,F.4.1 - Abstract
We show how (well-established) type systems based on non-idempotent intersection types can be extended to characterize termination properties of functional programming languages with pattern matching features. To model such programming languages, we use a (weak and closed) $\lambda$-calculus integrating a pattern matching mechanism on algebraic data types (ADTs). Remarkably, we also show that this language not only encodes Plotkin's CBV and CBN $\lambda$-calculus as well as other subsuming frameworks, such as the bang-calculus, but can also be used to interpret the semantics of effectful languages with exceptions. After a thorough study of the untyped language, we introduce a type system based on intersection types, and we show through purely logical methods that the set of terminating terms of the language corresponds exactly to that of well-typed terms. Moreover, by considering non-idempotent intersection types, this characterization turns out to be quantitative, i.e. the size of the type derivation of a term t gives an upper bound for the number of evaluation steps from t to its normal form., Comment: APLAS 2024, full version (including complete proofs)
- Published
- 2024
230. GRANDlib: A simulation pipeline for the Giant Radio Array for Neutrino Detection (GRAND)
- Author
-
GRAND Collaboration, Batista, Rafael Alves, Benoit-Lévy, Aurélien, Bister, Teresa, Bohacova, Martina, Bustamante, Mauricio, Carvalho, Washington, Chen, Yiren, Cheng, LingMei, Chiche, Simon, Colley, Jean-Marc, Correa, Pablo, Laurenciu, Nicoleta Cucu, Dai, Zigao, de Almeida, Rogerio M., de Errico, Beatriz, de Jong, Sijbrand, Neto, João R. T. de Mello, de Vries, Krijn D., Decoene, Valentin, Denton, Peter B., Duan, Bohao, Duan, Kaikai, Engel, Ralph, Erba, William, Fan, Yizhong, Ferrière, Arsène, Gou, QuanBu, Gu, Junhua, Guelfand, Marion, Guo, Jianhua, Guo, Yiqing, Guépin, Claire, Gülzow, Lukas, Haungs, Andreas, Havelka, Matej, He, Haoning, Hivon, Eric, Hu, Hongbo, Huang, Xiaoyuan, Huang, Yan, Huege, Tim, Jiang, Wen, Koirala, Ramesh, Kong, ChuiZheng, Kotera, Kumiko, Köhler, Jelena, Lago, Bruno L., Lai, Zhisen, Coz, Sandra Le, Legrand, François, Leisos, Antonios, Li, Rui, Li, Xingyu, Li, YiFei, Liu, Cheng, Liu, Ruoyu, Liu, Wei, Ma, Pengxiong, Macias, Oscar, Magnard, Frédéric, Marcowith, Alexandre, Martineau-Huynh, Olivier, McKinley, Thomas, Minodier, Paul, Mitra, Pragati, Mostafá, Miguel, Murase, Kohta, Niess, Valentin, Nonis, Stavros, Ogio, Shoichi, Oikonomou, Foteini, Pan, Hongwei, Papageorgiou, Konstantinos, Pierog, Tanguy, Piotrowski, Lech Wiktor, Prunet, Simon, Qian, Xiangli, Roth, Markus, Sako, Takashi, Schoorlemmer, Harm, Szálas-Motesiczky, Dániel, Sławiński, Szymon, Tian, Xishui, Timmermans, Anne, Timmermans, Charles, Tobiska, Petr, Tsirigotis, Apostolos, Tueros, Matías, Vittakis, George, Wang, Hanrui, Wang, Jiale, Wang, Shen, Wang, Xiangyu, Wang, Xu, Wei, Daming, Wei, Feng, Wu, Xiangping, Wu, Xuefeng, Xu, Xin, Xu, Xing, Yang, Fufu, Yang, Lili, Yang, Xuan, Yuan, Qiang, Zarka, Philippe, Zeng, Houdun, Zhang, Chao, Zhang, Jianli, Zhang, Kewen, Zhang, Pengfei, Zhang, Qingchi, Zhang, Songbo, Zhang, Yi, and Zhou, Hao
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
The operation of upcoming ultra-high-energy cosmic-ray, gamma-ray, and neutrino radio-detection experiments, like the Giant Radio Array for Neutrino Detection (GRAND), poses significant computational challenges involving the production of numerous simulations of particle showers and their detection, and a high data throughput. GRANDlib is an open-source software tool designed to meet these challenges. Its primary goal is to perform end-to-end simulations of the detector operation, from the interaction of ultra-high-energy particles, through -- by interfacing with external air-shower simulations -- the ensuing particle shower development and its radio emission, to its detection by antenna arrays and its processing by data-acquisition systems. Additionally, GRANDlib manages the visualization, storage, and retrieval of experimental and simulated data. We present an overview of GRANDlib to serve as the basis of future GRAND analyses., Comment: 11 pages, 9 figures, plus appendices; Matches published version
- Published
- 2024
- Full Text
- View/download PDF
231. Experiment-based Models for Air Time and Current Consumption of LoRaWAN LR-FHSS
- Author
-
Ullah, Muhammad Asad, Mikhaylov, Konstantin, and Alves, Hirley
- Subjects
Computer Science - Emerging Technologies ,Electrical Engineering and Systems Science - Signal Processing - Abstract
Long Range - Frequency Hopping Spread Spectrum (LR-FHSS) is an emerging and promising technology recently introduced into the LoRaWAN protocol specification for both terrestrial and non-terrestrial networks, notably satellites. The higher capacity, long-range and robustness to Doppler effect make LR-FHSS a primary candidate for direct-to-satellite (DtS) connectivity for enabling Internet-of-things (IoT) in remote areas. The LR-FHSS devices envisioned for DtS IoT will be primarily battery-powered. Therefore, it is crucial to investigate the current consumption characteristics and Time-on-Air (ToA) of LR-FHSS technology. However, to our knowledge, no prior research has presented the accurate ToA and current consumption models for this newly introduced scheme. This paper addresses this shortcoming through extensive field measurements and the development of analytical models. Specifically, we have measured the current consumption and ToA for variable transmit power, message payload, and two new LR-FHSS-based Data Rates (DR8 and DR9). We also develop current consumption and ToA analytical models demonstrating a strong correlation with the measurement results exhibiting a relative error of less than 0.3%. Thus, it confirms the validity of our models. Conversely, the existing analytical models exhibit a higher relative error rate of -9.2 to 3.4% compared to our measurement results. The presented in this paper results can be further used for simulators or in analytical studies to accurately model the on-air time and energy consumption of LR-FHSS devices., Comment: This work has been submitted to the IEEE Internet of Things Journal for possible publication. Copyright to IEEE may be transferred without notice
- Published
- 2024
232. Revisiting the propagation of highly-energetic gamma rays in the Galaxy
- Author
-
Di Marco, Gaetano, Batista, Rafael Alves, and Sánchez-Conde, Miguel Ángel
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Recent gamma-ray observations have detected photons up to energies of a few PeV. These highly energetic gamma rays are emitted by the most powerful sources in the Galaxy. Propagating over astrophysical distances, gamma rays might interact with background photons producing electron-positron pairs, then deflected by astrophysical magnetic fields. In turn, these charged particles might scatter through inverse Compton galactic radiation fields, triggering electromagnetic cascades. In this scenario, the characterisation of astrophysical environment in which gamma rays travel, specifically background photons and magnetic fields, is crucial. We explore the impact of propagation effects on observables at Earth by simulating galactic sources emitting gamma rays with energy between $100 \; \text{GeV}$ and $100 \; \text{PeV}$. We analyse the imprint of the galactic environment on observed energy spectra and arrival direction maps, revealing gamma-ray absorption features in the former and ``deflection" of gamma rays in the latter. Specifically, owing to interstellar radiation field spatial distribution and the galactic magnetic field structure, propagation effects on observables are found to be related to the specific gamma-ray source position and to the prompt emission model. Detailed investigations of the propagation effect on galactic gamma rays will improve the robustness of both current and future gamma-ray detections and indirect dark matter searches., Comment: 17 pages, 24 figures and 1 table. Submitted to PRD. Comments welcome!
- Published
- 2024
233. A computational study of algebraic coarse spaces for two-level overlapping additive Schwarz preconditioners
- Author
-
Alves, Filipe A. C. S., Heinlein, Alexander, and Hajibeygi, Hadi
- Subjects
Mathematics - Numerical Analysis - Abstract
The two-level overlapping additive Schwarz method offers a robust and scalable preconditioner for various linear systems resulting from elliptic problems. One of the key to these properties is the construction of the coarse space used to solve a global coupling problem, which traditionally requires information about the underlying discretization. An algebraic formulation of the coarse space reduces the complexity of its assembly. Furthermore, well-chosen coarse basis functions within this space can better represent changes in the problem's properties. Here we introduce an algebraic formulation of the multiscale finite element method (MsFEM) based on the algebraic multiscale solver (AMS) in the context of the two-level Schwarz method. We show how AMS is related to other energy-minimizing coarse spaces. Furthermore, we compare the AMS with other algebraic energy-minimizing spaces: the generalized Dryja-Smith-Widlund (GDSW), and the reduced dimension GDSW (RGDSW)., Comment: Submitted to the proceedings of the 28th International Conference on Domain Decomposition Methods (DDM28)
- Published
- 2024
234. On the Spectral Efficiency of Movable and Rotary Antenna Arrays under Rician Fading
- Author
-
Tominaga, Eduardo Noboro, López, Onel Luis Alcaraz, Svensson, Tommy, Souza, Richard Demo, and Alves, Hirley
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
Most works evaluating the performance of Multi-User Multiple-Input Multiple-Output (MU-MIMO) systems consider Access Points (APs) with fixed antennas, that is, without any movement capability. Recently, the idea of APs with antenna arrays that are able to move have gained traction among the research community. Many works evaluate the communications performance of Movable Antenna Arrays (MAAs) that can move on the horizontal plane. However, they require a very bulky, complex and expensive movement system. In this work, we propose a simpler and cheaper alternative: the utilization of Rotary Antenna Arrays (RAA)s, i.e. antenna arrays that can rotate. We also analyze the performance of a system in which the array is able to both move and rotate. The movements and/or rotations of the array are computed in order to maximize the mean per-user achievable spectral efficiency, based on estimates of the locations of the active devices and using particle swarm optimization. We adopt a spatially correlated Rician fading channel model, and evaluate the resulting optimized performance of the different setups in terms of mean per-user achievable spectral efficiencies. Our numerical results show that both the optimal rotations and movements of the arrays can provide substantial performance gains when the line-of-sight components of the channel vectors are strong. Moreover, the simpler RAAs can outperform the MAAs when their movement area is constrained., Comment: 11 pages, 11 figures. Manuscript submitted to IEEE Open Journal of the Communications Society. arXiv admin note: text overlap with arXiv:2406.19078
- Published
- 2024
235. Measurement of neutrino oscillation parameters with the first six detection units of KM3NeT/ORCA
- Author
-
KM3NeT Collaboration, Aiello, S., Albert, A., Alhebsi, A. R., Alshamsi, M., Garre, S. Alves, Ambrosone, A., Ameli, F., Andre, M., Aphecetche, L., Ardid, M., Ardid, S., Atmani, H., Aublin, J., Badaracco, F., Bailly-Salins, L., Bardačová, Z., Baret, B., Bariego-Quintana, A., Becherini, Y., Bendahman, M., Benfenati, F., Benhassi, M., Bennani, M., Benoit, D. M., Berbee, E., Bertin, V., Biagi, S., Boettcher, M., Bonanno, D., Bouasla, A. B., Boumaaza, J., Bouta, M., Bouwhuis, M., Bozza, C., Bozza, R. M., Brânzaş, H., Bretaudeau, F., Breuhaus, M., Bruijn, R., Brunner, J., Bruno, R., Buis, E., Buompane, R., Busto, J., Caiffi, B., Calvo, D., Capone, A., Carenini, F., Carretero, V., Cartraud, T., Castaldi, P., Cecchini, V., Celli, S., Cerisy, L., Chabab, M., Chen, A., Cherubini, S., Chiarusi, T., Circella, M., Cocimano, R., Coelho, J. A. B., Coleiro, A., Condorelli, A., Coniglione, R., Coyle, P., Creusot, A., Cuttone, G., Dallier, R., De Benedittis, A., De Martino, B., De Wasseige, G., Decoene, V., Del Rosso, I., Di Mauro, L. S., Di Palma, I., Díaz, A. F., Diego-Tortosa, D., Distefano, C., Domi, A., Donzaud, C., Dornic, D., Drakopoulou, E., Drouhin, D., Ducoin, J. -G., Dvornický, R., Eberl, T., Eckerová, E., Eddymaoui, A., van Eeden, T., Eff, M., van Eijk, D., Bojaddaini, I. El, Hedri, S. El, Ellajosyula, V., Enzenhöfer, A., Ferrara, G., Filipović, M. D., Filippini, F., Franciotti, D., Fusco, L. A., Gagliardini, S., Gal, T., Méndez, J. García, Soto, A. Garcia, Oliver, C. Gatius, Geißelbrecht, N., Genton, E., Ghaddari, H., Gialanella, L., Gibson, B. K., Giorgio, E., Goos, I., Goswami, P., Gozzini, S. R., Gracia, R., Guidi, C., Guillon, B., Gutiérrez, M., Haack, C., van Haren, H., Heijboer, A., Hennig, L., Hernández-Rey, J. J., Ibnsalih, W. Idrissi, Illuminati, G., Joly, D., de Jong, M., de Jong, P., Jung, B. J., Kistauri, G., Kopper, C., Kouchner, A., Kovalev, Y. Y., Kueviakoe, V., Kulikovskiy, V., Kvatadze, R., Labalme, M., Lahmann, R., Lamoureux, M., Larosa, G., Lastoria, C., Lazo, A., Stum, S. Le, Lehaut, G., Lemaítre, V., Leonora, E., Lessing, N., Levi, G., Clark, M. Lindsey, Longhitano, F., Magnani, F., Majumdar, J., Malerba, L., Mamedov, F., Mańczak, J., Manfreda, A., Marconi, M., Margiotta, A., Marinelli, A., Markou, C., Martin, L., Mastrodicasa, M., Mastroianni, S., Mauro, J., Miele, G., Migliozzi, P., Migneco, E., Mitsou, M. L., Mollo, C. M., Morales-Gallegos, L., Moussa, A., Mateo, I. Mozun, Muller, R., Musone, M. R., Musumeci, M., Navas, S., Nayerhoda, A., Nicolau, C. A., Nkosi, B., Fearraigh, B. Ó, Oliviero, V., Orlando, A., Oukacha, E., Paesani, D., González, J. Palacios, Papalashvili, G., Parisi, V., Gomez, E. J. Pastor, Păun, A. M., Păvălaş, G. E., Martínez, S. Peña, Perrin-Terrin, M., Pestel, V., Pestes, R., Piattelli, P., Plavin, A., Poirè, C., Popa, V., Pradier, T., Prado, J., Pulvirenti, S., Quiroz-Rangel, C. A., Randazzo, N., Razzaque, S., Rea, I. C., Real, D., Riccobene, G., Robinson, J., Romanov, A., Ros, E., Šaina, A., Greus, F. Salesa, Samtleben, D. F. E., Losa, A. Sánchez, Sanfilippo, S., Sanguineti, M., Santonocito, D., Sapienza, P., Schnabel, J., Schumann, J., Schutte, H. M., Seneca, J., Sgura, I., Shanidze, R., Sharma, A., Shitov, Y., Šimkovic, F., Simonelli, A., Sinopoulou, A., Spisso, B., Spurio, M., Stavropoulos, D., Štekl, I., Stellacci, S. M., Taiuti, M., Tayalati, Y., Thiersen, H., Thoudam, S., Melo, I. Tosta e, Trocmé, B., Tsourapis, V., Tudorache, A., Tzamariudaki, E., Ukleja, A., Vacheret, A., Valsecchi, V., Van Elewyck, V., Vannoye, G., Vasileiadis, G., de Sola, F. Vazquez, Veutro, A., Viola, S., Vivolo, D., van Vliet, A., de Wolf, E., Yvon, I., Zavatarelli, S., Zegarelli, A., Zito, D., Zornoza, J. D., Zúñiga, J., and Zywucka, N.
- Subjects
High Energy Physics - Experiment - Abstract
KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on an initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photo-sensors. A high-purity neutrino sample was extracted, corresponding to an exposure of 433 kton-years. The sample of 5828 neutrino candidates is analysed following a binned log-likelihood method in the reconstructed energy and cosine of the zenith angle. The atmospheric oscillation parameters are measured to be $\sin^2\theta_{23}= 0.51^{+0.04}_{-0.05}$, and $ \Delta m^2_{31} = 2.18^{+0.25}_{-0.35}\times 10^{-3}~\mathrm{eV^2} \cup \{-2.25,-1.76\}\times 10^{-3}~\mathrm{eV^2}$ at 68\% CL. The inverted neutrino mass ordering hypothesis is disfavoured with a p-value of 0.25., Comment: 29 pages, 12 figures
- Published
- 2024
236. TOI-2490b- The most eccentric brown dwarf transiting in the brown dwarf desert
- Author
-
Henderson, Beth A., Casewell, Sarah L., Jordán, Andrés, Brahm, Rafael, Henning, Thomas, Gill, Samuel, Mayorga, L. C., Ziegler, Carl, Stassun, Keivan G., Goad, Michael R., Acton, Jack, Alves, Douglas R., Anderson, David R., Apergis, Ioannis, Armstrong, David J., Bayliss, Daniel, Burleigh, Matthew R., Dragomir, Diana, Gillen, Edward, Günther, Maximilian N., Hedges, Christina, Hesse, Katharine M., Hobson, Melissa J., Jenkins, James S., Jenkins, Jon M., Kendall, Alicia, Lendl, Monika, Lund, Michael B., McCormac, James, Moyano, Maximiliano, Osborn, Ares, Pinto, Marcelo Tala, Ramsay, Gavin, Rapetti, David, Saha, Suman, Seager, Sara, Trifonov, Trifon, Udry, Stéphane, Vines, Jose I., West, Richard G., Wheatley, Peter J., Winn, Joshua N., and Zivave, Tafadzwa
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We report the discovery of the most eccentric transiting brown dwarf in the brown dwarf desert, TOI02490b. The brown dwarf desert is the lack of brown dwarfs around main sequence stars within $\sim3$~AU and is thought to be caused by differences in formation mechanisms between a star and planet. To date, only $\sim40$ transiting brown dwarfs have been confirmed. \systemt is a $73.6\pm2.4$ \mjupnospace, $1.00\pm0.02$ \rjup brown dwarf orbiting a $1.004_{-0.022}^{+0.031}$ \msunnospace, $1.105_{-0.012}^{+0.012}$ \rsun sun-like star on a 60.33~d orbit with an eccentricity of $0.77989\pm0.00049$. The discovery was detected within \tess sectors 5 (30 minute cadence) and 32 (2 minute and 20 second cadence). It was then confirmed with 31 radial velocity measurements with \feros by the WINE collaboration and photometric observations with the Next Generation Transit Survey. Stellar modelling of the host star estimates an age of $\sim8$~Gyr, which is supported by estimations from kinematics likely placing the object within the thin disc. However, this is not consistent with model brown dwarf isochrones for the system age suggesting an inflated radius. Only one other transiting brown dwarf with an eccentricity higher than 0.6 is currently known in the brown dwarf desert. Demographic studies of brown dwarfs have suggested such high eccentricity is indicative of stellar formation mechanisms., Comment: Accepted for publication in MNRAS, 18 pages, 14 figures
- Published
- 2024
237. Suppression of the type Ia supernova host galaxy step in the outer regions of galaxies
- Author
-
Toy, M., Wiseman, P., Sullivan, M., Scolnic, D., Vincenzi, M., Brout, D., Davis, T. M., Frohmaier, C., Galbany, L., Lidman, C., Lee, J., Kelsey, L., Kessler, R., Möller, A., Popovic, B., Sánchez, B. O., Shah, P., Smith, M., Allam, S., Aguena, M., Alves, O., Bacon, D., Brooks, D., Burke, D. L., Rosell, A. Carnero, Carretero, J., da Costa, L. N., Pereira, M. E. S., Desai, S., Diehl, H. T., Doel, P., Drlica-Wagner, A., Everett, S., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Gruendl, R. A., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Lahav, O., Lee, S., Marshall, J. L., Mena-Fernández, J., Miquel, R., Palmese, A., Pieres, A., Malagón, A. A. Plazas, Romer, A. K., Samuroff, S., Sanchez, E., Cid, D. Sanchez, Schubnell, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., Vikram, V., Walker, A. R., and Weaverdyck, N.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Using 1533 type Ia supernovae (SNe Ia) from the five-year sample of the Dark Energy Survey (DES), we investigate the effects of projected galactocentric separation between the SNe and their host galaxies on their light curves and standardization. We show, for the first time, that the difference in SN Ia post-standardization brightnesses between high and low-mass hosts reduces from $0.078\pm0.011$ mag in the full sample to $0.036 \pm 0.018$ mag for SNe Ia located in the outer regions of their host galaxies, while increasing to $0.100 \pm 0.014$ mag for SNe in the inner regions. In these inner regions, the step can be reduced (but not removed) using a model where the $R_V$ of dust along the line-of-sight to the SN changes as a function of galaxy properties. To explain the remaining difference, we use the distributions of the SN Ia stretch parameter to test whether the inferred age of SN progenitors are more varied in the inner regions of galaxies. We find that the proportion of high-stretch SNe Ia in red (older) environments is more prominent in outer regions and that the outer regions stretch distributions are overall more homogeneous compared to inner regions, but conclude that this effect cannot explain the reduction in significance of any Hubble residual step in outer regions. We conclude that the standardized distances of SNe Ia located in the outer regions of galaxies are less affected by their global host galaxy properties than those in the inner regions., Comment: 17 pages, 13 figures
- Published
- 2024
238. Variable, circularly polarized radio emission from the Young Stellar Object [BHB2007]-1: another ingredient of a unique system
- Author
-
Kaur, Simranpreet, Girart, Josep M., Viganò, Daniele, Monge, Álvaro Sánchez, Cleeves, L. Ilsedore, Zurlo, Alice, Del Sordo, Fabio, Morata, Òscar, Bhowmik, Trisha, and Alves, Felipe O.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The young stellar object [BHB2007]-1 has been extensively studied in the past at radio, millimeter, and infrared wavelengths. It shows a gap in the disk and previous observations claimed the possible emission from a forming sub-stellar object, in correspondence to the disk gap. Here, we analyze a set of 8 Karl Jansky Very Large Array (VLA) observations at 15 GHz and spread over a month. We infer a slowly variable emission from the star, with a $\sim 15 \text{-} 20\%$ circular polarization detected in two of the eight observations. The latter can be related to the magnetic fields in the system, while the unpolarized and moderately varying component can be indicative of free-free emission associated with jet induced shocks or interaction of the stellar wind with dense surrounding material. We discard any relevant short flaring activities when sampling the radio light curves down to 10 seconds and find no clear evidence of emission from the sub-stellar object inferred from past observations, although deeper observations could shed further light on this., Comment: 9 pages, 6 figures, 2 tables, Accepted for publication in A&A
- Published
- 2024
- Full Text
- View/download PDF
239. Beta regression mixed model applied to sensory analysis
- Author
-
Alves, João César Reis, Palma, Gabriel Rodrigues, and de Lara, Idemauro Antonio Rodrigues
- Subjects
Quantitative Biology - Quantitative Methods - Abstract
Sensory analysis is an important area that the food industry can use to innovate and improve its products. This study involves a sample of individuals who can be trained or not to assess a product using a hedonic scale or notes, where the experimental design is a balanced incomplete block design. In this context, integrating sensory analysis with effective statistical methods, which consider the nature of the response variables, is essential to answer the aim of the experimental study. Some techniques are available to analyse sensory data, such as response surface models or categorical models. This article proposes using beta regression as an alternative to the proportional odds model, addressing some convergence problems, especially regarding the number of parameters. Moreover, the beta distribution is flexible for heteroscedasticity and asymmetry data. To this end, we conducted simulation studies that showed agreement rates in product selection using both models. Also, we presented a motivational study that was developed to select prebiotic drinks based on cashew nuts added to grape juice. In this application, the beta regression mixed model results corroborated with the selected formulations using the proportional mixed model., Comment: 13 pages
- Published
- 2024
240. Calibrating the Absolute Magnitude of Type Ia Supernovae in Nearby Galaxies using [OII] and Implications for $H_{0}$
- Author
-
Dixon, M., Mould, J., Lidman, C., Taylor, E. N., Flynn, C., Duffy, A. R., Galbany, L., Scolnic, D., Davis, T. M., Möller, A., Kelsey, L., Lee, J., Wiseman, P., Vincenzi, M., Shah, P., Aguena, M., Allam, S. S., Alves, O., Bacon, D., Bocquet, S., Brooks, D., Burke, D. L., Rosell, A. Carnero, Carretero, J., Conselice, C., da Costa, L. N., Pereira, M. E. S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Gruen, D., Gruendl, R. A., Gutierrez, G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lima, M., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Myles, J., Nichol, R. C., Ogando, R. L. C., Palmese, A., Pieres, A., Malagón, A. A. Plazas, Samuroff, S., Sanchez, E., Cid, D. Sanchez, Sevilla-Noarbe, I., Smith, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Tucker, B. E., Tucker, D. L., Vikram, V., Walker, A. R., and Weaverdyck, N.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The present state of cosmology is facing a crisis where there is a fundamental disagreement in measurements of the Hubble constant ($H_{0}$), with significant tension between the early and late universe methods. Type Ia supernovae (SNe Ia) are important to measuring $H_{0}$ through the astronomical distance ladder. However, there remains potential to better standardise SN Ia light curves by using known dependencies on host galaxy properties after the standard light curve width and colour corrections have been applied to the peak SN Ia luminosities. To explore this, we use the 5-year photometrically identified SNe Ia sample obtained by the Dark Energy Survey, along with host galaxy spectra obtained by the Australian Dark Energy Survey. Using host galaxy spectroscopy, we find a significant trend with the equivalent width (EW) of the [OII] $\lambda\lambda$ 3727, 29 doublet, a proxy for specific star formation rate, and Hubble residuals. We find that the correlation with [OII] EW is a powerful alternative to the commonly used mass step after initial light curve corrections. Applying this [OII] EW correction to 20 SNe Ia in calibrator galaxies observed with WiFeS, we examined the impact on SN Ia absolute magnitudes and $H_{0}$. Our [OII] EW corrections result in $H_{0}$ values ranging between 73.04 to 73.51 $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$, with a combined statistical and systematic uncertainty of $\sim$1.31 $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$. However, even with this additional correction, the impact of host galaxy properties in standardising SNe Ia appears limited in reducing the current tension ($\sim$5$\sigma$) with the CMB result for $H_{0}$., Comment: 16 pages, 13 figures. Accepted for publication in MNRAS
- Published
- 2024
241. First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Barham~Alzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., M~Gago, A., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lal{ă}u, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., -Y~Li, J., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paix{ã}o, L. G. Porto, Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Diego~Restrepo, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting.
- Published
- 2024
- Full Text
- View/download PDF
242. Enhancing weak lensing redshift distribution characterization by optimizing the Dark Energy Survey Self-Organizing Map Photo-z method
- Author
-
Campos, A., Yin, B., Dodelson, S., Amon, A., Alarcon, A., Sánchez, C., Bernstein, G. M., Giannini, G., Myles, J., Samuroff, S., Alves, O., Andrade-Oliveira, F., Bechtol, K., Becker, M. R., Blazek, J., Camacho, H., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Davis, C., DeRose, J., Diehl, H. T., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Friedrich, O., Gatti, M., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Jarvis, M., Krause, E., Kuropatkin, N., Leget, P. -F., MacCrann, N., McCullough, J., Navarro-Alsina, A., Pandey, S., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Wechsler, R. H., Yanny, B., Zhang, Y., Zuntz, J., Aguena, M., Annis, J., Bacon, D., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lima, M., Lin, H., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Paterno, M., Pereira, M. E. S., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Sanchez, E., Cid, D. Sanchez, Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Vikram, V., and Weaverdyck, N.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Characterization of the redshift distribution of ensembles of galaxies is pivotal for large scale structure cosmological studies. In this work, we focus on improving the Self-Organizing Map (SOM) methodology for photometric redshift estimation (SOMPZ), specifically in anticipation of the Dark Energy Survey Year 6 (DES Y6) data. This data set, featuring deeper and fainter galaxies than DES Year 3 (DES Y3), demands adapted techniques to ensure accurate recovery of the underlying redshift distribution. We investigate three strategies for enhancing the existing SOM-based approach used in DES Y3: 1) Replacing the Y3 SOM algorithm with one tailored for redshift estimation challenges; 2) Incorporating $\textit{g}$-band flux information to refine redshift estimates (i.e. using $\textit{griz}$ fluxes as opposed to only $\textit{riz}$); 3) Augmenting redshift data for galaxies where available. These methods are applied to DES Y3 data, and results are compared to the Y3 fiducial ones. Our analysis indicates significant improvements with the first two strategies, notably reducing the overlap between redshift bins. By combining strategies 1 and 2, we have successfully managed to reduce redshift bin overlap in DES Y3 by up to 66$\%$. Conversely, the third strategy, involving the addition of redshift data for selected galaxies as an additional feature in the method, yields inferior results and is abandoned. Our findings contribute to the advancement of weak lensing redshift characterization and lay the groundwork for better redshift characterization in DES Year 6 and future stage IV surveys, like the Rubin Observatory.
- Published
- 2024
243. Positive Mass in General Relativity Without Energy Conditions
- Author
-
Alves, Níckolas de Aguiar, Landulfo, Andre G. S., and Costa, Bruno Arderucio
- Subjects
General Relativity and Quantum Cosmology ,High Energy Physics - Theory - Abstract
A long-standing problem in physics is why observed masses are always positive. While energy conditions in quantum field theory can partly answer this problem, in this paper we find evidence that classical general relativity abhors negative masses, without the need for quantum theory or energy conditions. This is done by considering many different models of negative-mass "stars" and showing they are dynamically unstable. A fortiori, we show that any barotropic negative-mass star must be dynamically unstable., Comment: 26 pages, 9 figures. v3 accepted for publication in Phys. Rev. D. Two extra appendices relative to the published version
- Published
- 2024
- Full Text
- View/download PDF
244. Weak Gravitational Lensing around Low Surface Brightness Galaxies in the DES Year 3 Data
- Author
-
Chicoine, N., Prat, J., Zacharegkas, G., Chang, C., Tanoglidis, D., Drlica-Wagner, A., Anbajagane, D., Adhikari, S., Amon, A., Wechsler, R. H., Alarcon, A., Bechtol, K., Becker, M. R., Bernstein, G. M., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chen, R., Choi, A., Cordero, J., Davis, C., DeRose, J., Dodelson, S., Doux, C., Eckert, K., Elvin-Poole, J., Everett, S., Ferté, A., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Herner, K., Jarvis, M., Leget, P. -F., MacCrann, N., McCullough, J., Myles, J., Navarro-Alsina, A., Pandey, S., Raveri, M., Rollins, R. P., Roodman, A., Ross, A. J., Rykoff, E. S., Sánchez, C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Yanny, B., Yin, B., Zuntz, J., Aguena, M., Alves, O., Bacon, D., Brooks, D., Carretero, J., Castander, F. J., Conselice, C., Desai, S., De Vicente, J., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lee, S., Lidman, C., Lima, M., Marshall, J. L., Mena-Fernández, J., Miquel, R., Muir, J., Ogando, R. L. C., Palmese, A., Pereira, M. E. S., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Walker, A. R., Samuroff, S., Sanchez, E., Cid, D. Sanchez, Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Tucker, D. L., Vikram, V., Weaverdyck, N., and Wiseman, P.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present galaxy-galaxy lensing measurements using a sample of low surface brightness galaxies (LSBGs) drawn from the Dark Energy Survey Year 3 (Y3) data as lenses. LSBGs are diffuse galaxies with a surface brightness dimmer than the ambient night sky. These dark-matter-dominated objects are intriguing due to potentially unusual formation channels that lead to their diffuse stellar component. Given the faintness of LSBGs, using standard observational techniques to characterize their total masses proves challenging. Weak gravitational lensing, which is less sensitive to the stellar component of galaxies, could be a promising avenue to estimate the masses of LSBGs. Our LSBG sample consists of 23,790 galaxies separated into red and blue color types at $g-i\ge 0.60$ and $g-i< 0.60$, respectively. Combined with the DES Y3 shear catalog, we measure the tangential shear around these LSBGs and find signal-to-noise ratios of 6.67 for the red sample, 2.17 for the blue sample, and 5.30 for the full sample. We use the clustering redshifts method to obtain redshift distributions for the red and blue LSBG samples. Assuming all red LSBGs are satellites, we fit a simple model to the measurements and estimate the host halo mass of these LSBGs to be $\log(M_{\rm host}/M_{\odot}) = 12.98 ^{+0.10}_{-0.11}$. We place a 95% upper bound on the subhalo mass at $\log(M_{\rm sub}/M_{\odot})<11.51$. By contrast, we assume the blue LSBGs are centrals, and place a 95% upper bound on the halo mass at $\log(M_\mathrm{host}/M_\odot) < 11.84$. We find that the stellar-to-halo mass ratio of the LSBG samples is consistent with that of the general galaxy population. This work illustrates the viability of using weak gravitational lensing to constrain the halo masses of LSBGs., Comment: 20 pages, 14 figures
- Published
- 2024
- Full Text
- View/download PDF
245. Polarization and energy ellipsoids for an introductory visualization of tensors
- Author
-
Alves, Danilo T., Queiroz, Lucas, and Silva, Jeferson Danilo L.
- Subjects
Physics - Physics Education ,Physics - Classical Physics - Abstract
In ``The Feynman Lectures on Physics'' is discussed an introduction to tensors by means of the polarization tensor, including a way of ``visualizing'' this tensor via the energy ellipsoid, which is drawn by the electric fields which produce the same polarization energy density in an anisotropic crystal. Here, we discuss an alternative way of visualizing the polarization tensor, by means of the polarization ellipsoid, which is based on the ideas of Lam\'e's stress ellipsoid and is drawn by the polarization vectors produced by electric fields having the same magnitude. We compare both ellipsoids as a first introductory way of visualizing the polarization tensor., Comment: 6 pages, 2 figures
- Published
- 2024
246. Implementation and Applications of WakeWords Integrated with Speaker Recognition: A Case Study
- Author
-
Filho, Alexandre Costa Ferro, de Oliveira, Elisa Ayumi Masasi, Brito, Iago Alves, and Bittencourt, Pedro Martins
- Subjects
Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
This paper explores the application of artificial intelligence techniques in audio and voice processing, focusing on the integration of wake words and speaker recognition for secure access in embedded systems. With the growing prevalence of voice-activated devices such as Amazon Alexa, ensuring secure and user-specific interactions has become paramount. Our study aims to enhance the security framework of these systems by leveraging wake words for initial activation and speaker recognition to validate user permissions. By incorporating these AI-driven methodologies, we propose a robust solution that restricts system usage to authorized individuals, thereby mitigating unauthorized access risks. This research delves into the algorithms and technologies underpinning wake word detection and speaker recognition, evaluates their effectiveness in real-world applications, and discusses the potential for their implementation in various embedded systems, emphasizing security and user convenience. The findings underscore the feasibility and advantages of employing these AI techniques to create secure, user-friendly voice-activated systems.
- Published
- 2024
247. Evaluating Cosmological Biases using Photometric Redshifts for Type Ia Supernova Cosmology with the Dark Energy Survey Supernova Program
- Author
-
Chen, R., Scolnic, D., Vincenzi, M., Rykoff, E. S., Myles, J., Kessler, R., Popovic, B., Sako, M., Smith, M., Armstrong, P., Brout, D., Davis, T. M., Galbany, L., Lee, J., Lidman, C., Möller, A., Sánchez, B. O., Sullivan, M., Qu, H., Wiseman, P., Abbott, T. M. C., Aguena, M., Allam, S., Alves, O., Andrade-Oliveira, F., Annis, J., Bacon, D., Brooks, D., Rosell, A. Carnero, Carretero, J., Choi, A., Conselice, C., da Costa, L. N., Pereira, M. E. S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Gruen, D., Gruendl, R. A., Gutierrez, G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Kuehn, K., Lima, M., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Pieres, A., Malagón, A. A. Plazas, Roodman, A., Samuroff, S., Sanchez, E., Cid, D. Sanchez, Sevilla-Noarbe, I., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Tucker, D. L., Vikram, V., Weaverdyck, N., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cosmological analyses with Type Ia Supernovae (SNe Ia) have traditionally been reliant on spectroscopy for both classifying the type of supernova and obtaining reliable redshifts to measure the distance-redshift relation. While obtaining a host-galaxy spectroscopic redshift for most SNe is feasible for small-area transient surveys, it will be too resource intensive for upcoming large-area surveys such as the Vera Rubin Observatory Legacy Survey of Space and Time, which will observe on the order of millions of SNe. Here we use data from the Dark Energy Survey (DES) to address this problem with photometric redshifts (photo-z) inferred directly from the SN light-curve in combination with Gaussian and full p(z) priors from host-galaxy photo-z estimates. Using the DES 5-year photometrically-classified SN sample, we consider several photo-z algorithms as host-galaxy photo-z priors, including the Self-Organizing Map redshifts (SOMPZ), Bayesian Photometric Redshifts (BPZ), and Directional-Neighbourhood Fitting (DNF) redshift estimates employed in the DES 3x2 point analyses. With detailed catalog-level simulations of the DES 5-year sample, we find that the simulated w can be recovered within $\pm$0.02 when using SN+SOMPZ or DNF prior photo-z, smaller than the average statistical uncertainty for these samples of 0.03. With data, we obtain biases in w consistent with simulations within ~1$\sigma$ for three of the five photo-z variants. We further evaluate how photo-z systematics interplay with photometric classification and find classification introduces a subdominant systematic component. This work lays the foundation for next-generation fully photometric SNe Ia cosmological analyses., Comment: 19 pages, 9 figures. Submitting to MNRAS, comments welcome
- Published
- 2024
248. Neural Network-Based Bandit: A Medium Access Control for the IIoT Alarm Scenario
- Author
-
Raghuwanshi, Prasoon, López, Onel Luis Alcaraz, Mehta, Neelesh B., Alves, Hirley, and Latva-aho, Matti
- Subjects
Mathematics - Optimization and Control ,Computer Science - Machine Learning - Abstract
Efficient Random Access (RA) is critical for enabling reliable communication in Industrial Internet of Things (IIoT) networks. Herein, we propose a deep reinforcement learning based distributed RA scheme, entitled Neural Network-Based Bandit (NNBB), for the IIoT alarm scenario. In such a scenario, the devices may detect a common critical event, and the goal is to ensure the alarm information is delivered successfully from at least one device. The proposed NNBB scheme is implemented at each device, where it trains itself online and establishes implicit inter-device coordination to achieve the common goal. Devices can transmit simultaneously on multiple orthogonal channels and each possible transmission pattern constitutes a possible action for the NNBB, which uses a deep neural network to determine the action. Our simulation results show that as the number of devices in the network increases, so does the performance gain of the NNBB compared to the Multi-Armed Bandit (MAB) RA benchmark. For instance, NNBB experiences a 7% success rate drop when there are four channels and the number of devices increases from 10 to 60, while MAB faces a 25% drop.
- Published
- 2024
- Full Text
- View/download PDF
249. Industrial Practices of Requirements Engineering for ML-Enabled Systems in Brazil
- Author
-
Alves, Antonio Pedro Santos, Kalinowski, Marcos, Mendez, Daniel, Villamizar, Hugo, Azevedo, Kelly, Escovedo, Tatiana, and Lopes, Helio
- Subjects
Computer Science - Software Engineering - Abstract
[Context] In Brazil, 41% of companies use machine learning (ML) to some extent. However, several challenges have been reported when engineering ML-enabled systems, including unrealistic customer expectations and vagueness in ML problem specifications. Literature suggests that Requirements Engineering (RE) practices and tools may help to alleviate these issues, yet there is insufficient understanding of RE's practical application and its perception among practitioners. [Goal] This study aims to investigate the application of RE in developing ML-enabled systems in Brazil, creating an overview of current practices, perceptions, and problems in the Brazilian industry. [Method] To this end, we extracted and analyzed data from an international survey focused on ML-enabled systems, concentrating specifically on responses from practitioners based in Brazil. We analyzed RE-related answers gathered from 72 practitioners involved in data-driven projects. We conducted quantitative statistical analyses on contemporary practices using bootstrapping with confidence intervals and qualitative studies on the reported problems involving open and axial coding procedures. [Results] Our findings highlight distinct RE implementation aspects in Brazil's ML projects. For instance, (i) RE-related tasks are predominantly conducted by data scientists; (ii) the most common techniques for eliciting requirements are interviews and workshop meetings; (iii) there is a prevalence of interactive notebooks in requirements documentation; (iv) practitioners report problems that include a poor understanding of the problem to solve and the business domain, low customer engagement, and difficulties managing stakeholders expectations. [Conclusion] These results provide an understanding of RE-related practices in the Brazilian ML industry, helping to guide research toward improving the maturity of RE for ML-enabled systems., Comment: arXiv admin note: substantial text overlap with arXiv:2310.06726
- Published
- 2024
250. Subthalamic Nucleus segmentation in high-field Magnetic Resonance data. Is space normalization by template co-registration necessary?
- Author
-
Lima, Tomás, Varga, Igor, Bakštein, Eduard, Novák, Daniel, and Alves, Victor
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Deep Brain Stimulation (DBS) is one of the most successful methods to diminish late-stage Parkinson's Disease (PD) symptoms. It is a delicate surgical procedure which requires detailed pre-surgical patient's study. High-field Magnetic Resonance Imaging (MRI) has proven its improved capacity of capturing the Subthalamic Nucleus (STN) - the main target of DBS in PD - in greater detail than lower field images. Here, we present a comparison between the performance of two different Deep Learning (DL) automatic segmentation architectures, one based in the registration to a brain template and the other performing the segmentation in in the MRI acquisition native space. The study was based on publicly available high-field 7 Tesla (T) brain MRI datasets of T1-weighted and T2-weighted sequences. nnUNet was used on the segmentation step of both architectures, while the data pre and post-processing pipelines diverged. The evaluation metrics showed that the performance of the segmentation directly in the native space yielded better results for the STN segmentation, despite not showing any advantage over the template-based method for the to other analysed structures: the Red Nucleus (RN) and the Substantia Nigra (SN).
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.