Localized corrosion of aluminum (Al, here including Al alloys) involves a series of physico-chemical processes at the interface between the metal and the aqueous ad-layer or the aqueous solution. The mechanisms that govern localized corrosion are quite complex and have been the subject of many experimental studies. Efforts to improve our understanding through computational studies have so far been much more limited. The primary aim of this Doctoral Thesis was to apply Density Functional Theory (DFT), together with some Molecular Dynamics calculations (limited effort), to gain a deeper mechanistic understanding of some of the most influential factors for the initiation of localized corrosion of Al: chloride ions, intermetallic particles (IMPs) and the presence of an aqueous ad-layer on the solid phase.In the scientific literature three scenarios have been proposed for the interaction of chloride ions with an aluminum and/or passive aluminum surface: through adsorption onto the passive layer, through breakdown of the same layer or through migration of chloride ions into the layer. DFT-calculations have been able to explore these scenarios in more detail, and provide evidence that chloride ions induce partial de-passivation in several ways. On the bare Al surface, chloride ions may inhibit the re-passivation through competitive adsorption with oxygen molecules, as suggested by density of state calculations. Chloride ions are also found to migrate via oxygen vacancies into the inner part of the investigated aluminum oxide films (α- and γ-Al2O3), where a critical amount of accumulated chloride can promote meta-stable pitting propagation. γ-Al2O3 exhibits a more open structure than α-Al2O3, resulting in a lower energy barrier for chloride migration.Micro-galvanic effects induced by Volta potential differences between representative intermetallic particles (Mg2Si and Al2Cu) and the surrounding Al matrix were predicted by calculating the work function of the bare surfaces o, Kvantmekaniska metoder såsom täthetsfunktional-teori (Eng. Density functional theory, DFT) har under de senaste årtiondena börjat tillämpas på allt mer komplicerade modellsystem. I denna doktorsavhandling har det primära syftet varit att tillämpa DFT för att kunna uppnå en djupare förståelse för mekanismerna bakom initiering av lokala korrosionsangrepp på aluminium. I möjligaste mån har de teoretiskt framtagna resultaten även jämförts med experimentella data. Lokalkorrosion är en komplicerad fysikalisk-kemisk process och en utmaning har varit att definiera frågeställningen så att förenklade men ändå relevanta modellsystem går att beräkna med DFT. Tre faktorer, som alla har stor betydelse för den lokala korrosionsinitieringen, har studerats mer ingående: kloridjoners inverkan, mikrogalvaniska effekter orsakade av intermetalliska sekundärfaser i aluminium-matrisen, och närvaron av en tunn adsorberad vattenfilm. Baserat på tidigare experimentella studier finns tre möjliga sätt på vilka kloridjoner kan påverka initieringen av lokalkorrosion: genom adsorption på aluminiumets passivfilm, genom strukturell nedbrytning av passivfilmen eller genom migration av kloridjoner genom passivfilmen. DFT-beräkningarna har kunnat belysa dessa processer mer ingående. Adsorberat klorid kan deformera ett monolager adsorberat syre, som täcker den rena aluminiumytan, och därvid åstadkomma en minskad strukturell stabilitet och passiverande förmåga hos monolagret syre. Bindningen mellan aluminium- och syreatomer är mycket stark och klorid kan inte bryta upp den bindningen. Däremot kan adsorberat klorid hämma repassiveringsförmågan hos monolagret syre genom att konkurrera med syre om möjliga adsorptionsplatser på aluminiumytan. DFT-beräkningarna visar även att kloridtransport sker via syrevakanser i den undersöka aluminiumoxidfilmen (α-Al2O3), som uppvisar en relativt liten energibarriär för klorid-migration. Energibarriären minskar ytterligare genom dopning med andra legeringselement eller, QC 2019-11-21