151. Bir otomotiv yan sanayi kuruluşunda veri madenciliği uygulaması
- Author
-
Çelik, Melek, Özmutlu, Seda, Endüstri Mühendisliği Ana Bilim Dalı, and Uludağ Üniversitesi/Fen Bilimleri Enstitüsü/Endüstri Mühendisliği Anabilim Dalı.
- Subjects
Endüstri ve Endüstri Mühendisliği ,Principal component analysis ,Ana bileşenler analizi ,Multiple regression analysis ,Kesim ,Principal components analysis ,Veri madenciliği ,Kanonik korelasyon analizi ,Industrial and Industrial Engineering ,Cutting ,Canonical correlation analysis ,Defects ,Hata ,Çoklu regresyon analizi ,Data mining - Abstract
Bu çalışmada otomotiv sektöründe faaliyet gösteren bir firmanın kesim bölümü için veri madenciliği yöntemleri ile bir iyileştirme uygulaması sunulmuştur. Çalışmanın amacı kesim bölümünden kaynaklanan hataların en aza indirilmesidir. Bunun için önce hatalar tanımlanmış ve ölçümler sonrasında sorunun kaynağı belirlenmiştir. Daha sonra firmadaki yığın veri analize hazır hale getirilmiş ve Ana Bileşenler Analizi ile girdilerin kendi içindeki etkinlikleri analiz edilmiştir. Kanonik Korelasyon Analizi ile girdi ve çıktı değişkenleri arasındaki ilişkiler yorumlanmış ve son olarak Çoklu Regresyon Analizi ile her bir çıktı için ayrı tahmin denklemleri oluşturulmuştur. Girdi değişkenleri için en uygun değerlerin atanması GAMS programı ile yapılmış ve sonuçlar mevcut durumla karşılaştırılmıştır. Sonuç olarak, en ve boy için istenilen değerlere yüzde yüz oranında ulaşılırken, delik çapı için ise yüzde elli beş oranında bir iyileştirme sağlanmıştır. In this study, an improvement study in the cutting department of an automotive firm using data-mining methods is presented. The aim of this study is to minimize defects in resulting from the cutting procedure. In order to do this, the faults are defined and the root causes of defects are determined after the measurements. Then the mass data collected from the cutting department is prepared for the analysis and effectiveness of the input variables is analyzed by Principal Component Analysis. The relations between the input and output variables are interpreted using Canonical Correlation Analysis and Multiple Regression Analysis is used for estimation of the outputs. Optimum values of the input variables are assigned using GAMS and the results are compared with the current situation. As a result, desired values are achieved at a hundred percent for the width and length and fifty five percent of improvement is acquired for the hole diameter. 123
- Published
- 2009