151. A spatiotemporally controlled recombinant cccDNA mouse model for studying HBV and developing drugs against the virus.
- Author
-
Zhou Z, Li C, Tan Z, Sun G, Peng B, Ren T, He J, Wang Y, Sun Y, Wang F, and Li W
- Subjects
- Mice, Animals, Hepatitis B virus physiology, DNA, Viral genetics, DNA, Viral metabolism, DNA, Circular genetics, DNA, Circular metabolism, Antiviral Agents therapeutic use, Disease Models, Animal, Virus Replication, Hepatitis B, Chronic genetics, Hepatitis B drug therapy
- Abstract
Covalently closed circular (ccc) DNA is the template for hepatitis B virus (HBV) replication. The lack of small animal models for characterizing chronic HBV infection has hampered research progress in HBV pathogenesis and drug development. Here, we generated a spatiotemporally controlled recombinant cccDNA (rcccDNA) mouse model by combining Cre/loxP-mediated DNA recombination with the liver-specific "Tet-on/Cre" system. The mouse model harbors three transgenes: a single copy of the HBV genome (integrated at the Rosa26 locus, RHBV), H11-albumin-rtTA (spatiotemporal conditional module), and (tetO)
7 -Cre (tetracycline response element), and is named as RHTC mouse. By supplying the RHTC mice with doxycycline (DOX)-containing drinking water for two days, the animals generate rcccDNA in hepatocytes, and the rcccDNA supports active HBV gene expression and can maintain HBV viremia persistence for over 60 weeks. Persistent HBV gene expression induces intrahepatic inflammation, fibrosis, and dysplastic pathology, which closely mirrors the disease progression in clinical patients. Bepirovirsen, an antisense oligonucleotide (ASO) targeting all HBV RNA species, showed dose-dependent antiviral effects in the RHTC mouse model. The spatiotemporally controlled rcccDNA mouse is convenient and reliable, providing versatile small animal model for studying cccDNA-centric HBV biology as well as evaluating antiviral therapeutics., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier B.V.)- Published
- 2023
- Full Text
- View/download PDF