151. Analysis of the energy and damage evolution rule for sandstone based on the particle flow method.
- Author
-
Zhang, Shuguang, Chen, Lei, Lu, Pingping, and Zhang, Yan
- Abstract
We use the particle flow code PFC3D to simulate the triaxial compression of sandstone under various radial stresses and loading strain rates to determine the triaxial stress-strain curves, crack propagation path, and contact forces to investigate the failure process of sandstone. We analyze the energy and damage evolution during triaxial compression. The results indicate that the tension and shear-induced cracks increase with the increase of radial stress under the same loading strain rate. Both normal and tangential contact forces exhibit strong anisotropy and increase with radial stress and strain rate. The normal contact force has an approximately symmetrical distribution with respect to the horizontal plane, whereas the tangential contact force has an approximately symmetrical distribution with respect to the axis. For the characteristics of the energy evolution, the boundary energy density, strain energy density, and dissipated energy density all increase linearly with the radial stress, and the boundary energy density increases at the fastest rate, followed by the strain energy density and dissipated energy density. In the post-peak stage the primary energy consumption is the dissipated energy. After that, in the remaining stage the strain energy decreases gradually. By analyzing the evolution of the damage variables in the prepeak area we observed that the damage variable followed an exponential relationship with the axial strain. When the loading strain rate is constant, the damage variable corresponding to the same strain value decreases with increase of radial stress. The results indicate that the increase in radial stress delays the damage acceleration. In contrast, the effect of the loading strain rate on the damage variable is small. The findings reveal the internal structural evolution of rocks during deformation and failure. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF