342 results on '"Wilks, S. C."'
Search Results
152. Kinetic simulations of ultra-intense laser plasma interactions
- Author
-
Kruer, W L, primary and Wilks, S C, additional
- Published
- 1992
- Full Text
- View/download PDF
153. Theory and simulation of stimulated Raman scatter at near‐forward angles
- Author
-
Wilks, S. C., primary, Kruer, W. L., additional, Estabrook, K., additional, and Langdon, A. B., additional
- Published
- 1992
- Full Text
- View/download PDF
154. Optical-field-ionized plasma x-ray lasers
- Author
-
Eder, D. C., primary, Amendt, P., additional, and Wilks, S. C., additional
- Published
- 1992
- Full Text
- View/download PDF
155. Observation of amplification of light by Langmuir waves and its saturation on the electron kinetic timescale.
- Author
-
KIRKWOOD, R. K., PING, Y., WILKS, S. C., MEEZAN, N., MICHEL, P., WILLIAMS, E., CLARK, D., SUTER, L., LANDEN, O., FISCH, N. J., VALEO, E. J., MALKIN, V., TURNBULL, D., SUCKEWER, S., WURTELE, J., WANG, T. L., MARTINS, S. F., JOSHI, C., YIN, L., and ALBRIGHT, B. J.
- Subjects
LIGHT amplifiers ,PLASMA gases ,ELECTRONS ,LIGHT scattering ,PLASMA waves ,RAMAN effect ,INERTIAL confinement fusion - Abstract
Experiments demonstrate the ~77× amplification of 0.5 to 3.5-ps pulses of seed light by interaction with Langmuir waves in a low density (1.2 × 1019 cm−3) plasma produced by a 1-ns, 230-J, 1054-nm pump beam with 1.2 × 1014 W/cm2 intensity. The waves are strongly damped (kλD = 0.38, Te = 244 eV) and grow over a ~ 1 mm length, similar to what is experienced by scattered light when it interacts with crossing beams as it exits an ignition target. The amplification reduces when the seed intensity increases above ~1 × 1011 W/cm2, indicating that saturation of the plasma waves on the electron kinetic time scale (<0.5 ps) limits the scatter to ~1% of the available pump energy. The observations are in agreement with 2D PIC simulations in this case. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
156. Cherenkov Wakefield accelerators: Rippled waveguides.
- Author
-
Jones, Michael E., Keinigs, R. K., Peter, W., and Wilks, S. C.
- Published
- 1989
- Full Text
- View/download PDF
157. The photon accelerator: A novel method of frequency upshifting sub-picosecond laser pulses.
- Author
-
Wilks, S. C., Katsouleas, T., and Dawson, J. M.
- Published
- 1989
- Full Text
- View/download PDF
158. Making relativistic positrons using ultraintense short pulse lasers.
- Author
-
Hui Chen, Wilks, S. C., Bonlie, J. D., Chen, S. N., Cone, K. V., Elberson, L. N., Gregori, G., Meyerhofer, D. D., Myatt, J., Price, D. F., Schneider, M. B., Shepherd, R., Stafford, D. C., Tommasini, R., Van Maren, R., and Beiersdorfer, P.
- Subjects
- *
POSITRONS , *LASER beams , *PLASMA gases , *ANGULAR correlations (Nuclear physics) , *NUCLEAR physics - Abstract
This paper describes a new positron source using ultraintense short pulse lasers. Although it has been theoretically studied since the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at the Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2×1010 positrons/s ejected at the back of approximately millimeter thick gold targets were detected. The targets were illuminated with short (∼1 ps) ultraintense (∼1×1020 W/cm2) laser pulses. These positrons are produced predominantly by the Bethe–Heitler process and have an effective temperature of 2–4 MeV, with the distribution peaking at 4–7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser-based positron source with its unique characteristics may complement the existing sources based on radioactive isotopes and accelerators. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
159. X-ray spectroscopy of buried layer foils irradiated at laser intensities in excess of 1020 W/cm2.
- Author
-
Chen, S. N., Patel, P. K., Chung, H.-K., Kemp, A. J., Le Pape, S., Maddox, B. R., Wilks, S. C., Stephens, R. B., and Beg, F. N.
- Subjects
X-ray spectroscopy ,PLASMA gases ,PLASMA waves ,PLASMA dynamics ,MAGNETOHYDRODYNAMICS - Abstract
Observations of a rapid decrease in thermal temperature as a function of depth of solid targets irradiated with a short pulse, ultrahigh-intensity laser are reported. This phenomenon is investigated using the Titan short pulse laser with intensities greater than 10
20 W/cm2 interacting with buried layer targets. The longitudinal temperature profile is determined by measuring K-shell spectra from a 0.4 μm copper tracer layer placed at various depths (i.e., 0–1.5 μm) within the 2.4 μm thick target. It is observed that the line ratios (He-like K-shell lines) as a function of temperature require a consideration of at least three parameters to analyze the K-shell spectra: hot electron population, time-dependent plasma conditions, and opacity. Here, the study of the effect of these three parameters on measured spectra in the short pulse high intensity laser-matter interactions using the atomic model FLYCHK [H.-K. Chung et al., High Energy Density Phys. 1, 3 (2005)] is presented. [ABSTRACT FROM AUTHOR]- Published
- 2009
- Full Text
- View/download PDF
160. Hot electron energy distributions from ultraintense laser solid interactions.
- Author
-
Hui Chen, Wilks, S. C., Kruer, W. L., Patel, P. K., and Shepherd, R.
- Subjects
- *
HOT carriers , *ELECTRONS , *LASERS , *PARTICLES (Nuclear physics) , *PLASMA gases - Abstract
Measurements of electron energy distributions from ultraintense (>1019 W/cm2) laser solid interactions using an electron spectrometer are presented. The effective hot electron temperatures (Thot) have been measured for laser intensities (Iλ2) from 1018 to 1021 W/cm2 μm2 for the first time, and Thot is found to increase as (Iλ2)0.34±0.04. This scaling agrees well with the empirical scaling published by Beg et al. [Phys. Plasmas 4, 447 (1997)], and was modeled by particle-in-cell simulations. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
161. Amplification of an ultrashort pulse laser by stimulated Raman scattering of a 1 ns pulse in a low density plasma.
- Author
-
Kirkwood, R. K., Dewald, E., Niemann, C., Meezan, N., Wilks, S. C., Price, D. W., Landen, O. L., Wurtele, J., Charman, A. E., Lindberg, R., Fisch, N. J., Malkin, V. M., and Valeo, E. O.
- Subjects
PHYSICS experiments ,PLASMA gases ,RAMAN effect ,LASER beams ,WAVELENGTHS ,PLASMA density - Abstract
Experiments are described in which a 1 mJ, 1 ps, 1200 nm seed laser beam is amplified by the interaction with an intersecting 350 J, 1 ns, 1054 nm pump beam in a low density (1×10
19 /cm3 ) plasma. The transmission of the seed beam is observed to be enhanced by >=25× when the plasma is near the resonant density for stimulated Raman scattering, compared to measured transmissions at wavelengths just below the resonant value. The amplification is observed to increase rapidly with increases in both pump intensity and plasma density. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF
162. Performance of a phase-conjugate engine implementing a finite-bit phase correction.
- Author
-
Baker, K. L., Stappaerts, E. A., Wilks, S. C., Gavel, D., Young, P. E., Tucker, J., Olivier, S. S., Silva, D. A., and Olsen, J.
- Published
- 2004
- Full Text
- View/download PDF
163. Table-top x-ray lasing based on optical-field-induced ionization
- Author
-
David Eder, Amendt, P., Bolton, P. R., Guethlein, G., London, R. A., Rosen, M. D., and Wilks, S. C.
164. High-repetition rate x-ray lasers and applications
- Author
-
David Eder, Amendt, P., Dane, C. B., Da Silva, L. B., Hackel, L. A., Hermann, M. R., London, R. A., Macgowan, B. J., Matthews, D. L., Rosen, M. D., and Wilks, S. C.
165. Laser generated proton beam focusing and high temperature isochoric heating of solid matter
- Author
-
Snavely, R. A., Zhang, B., Akli, K., Chen, Z., Freeman, R. R., Gu, P., Hatchett, S. P., Hey, D., Hill, J., Key, M. H., Izawa, Y., King, J., Kitagawa, Y., Kodama, R., Langdon, A. B., Lasinski, B. F., Lei, A., MacKinnon, A. J., Patel, P., Stephens, R., Tampo, M., Tanaka, K. A., Town, R., Toyama, Y., Tsutsumi, T., Wilks, S. C., Yabuuchi, T., Zheng, J., Snavely, R. A., Zhang, B., Akli, K., Chen, Z., Freeman, R. R., Gu, P., Hatchett, S. P., Hey, D., Hill, J., Key, M. H., Izawa, Y., King, J., Kitagawa, Y., Kodama, R., Langdon, A. B., Lasinski, B. F., Lei, A., MacKinnon, A. J., Patel, P., Stephens, R., Tampo, M., Tanaka, K. A., Town, R., Toyama, Y., Tsutsumi, T., Wilks, S. C., Yabuuchi, T., and Zheng, J.
- Abstract
Copyright 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 14(9), 092703_1-092703_5, 2007 and may be found at http://dx.doi.org/10.1063/1.2774001
166. Laser generated proton beam focusing and high temperature isochoric heating of solid matter
- Author
-
Snavely, R. A., Zhang, B., Akli, K., Chen, Z., Freeman, R. R., Gu, P., Hatchett, S. P., Hey, D., Hill, J., Key, M. H., Izawa, Y., King, J., Kitagawa, Y., Kodama, R., Langdon, A. B., Lasinski, B. F., Lei, A., MacKinnon, A. J., Patel, P., Stephens, R., Tampo, M., Tanaka, K. A., Town, R., Toyama, Y., Tsutsumi, T., Wilks, S. C., Yabuuchi, T., Zheng, J., Snavely, R. A., Zhang, B., Akli, K., Chen, Z., Freeman, R. R., Gu, P., Hatchett, S. P., Hey, D., Hill, J., Key, M. H., Izawa, Y., King, J., Kitagawa, Y., Kodama, R., Langdon, A. B., Lasinski, B. F., Lei, A., MacKinnon, A. J., Patel, P., Stephens, R., Tampo, M., Tanaka, K. A., Town, R., Toyama, Y., Tsutsumi, T., Wilks, S. C., Yabuuchi, T., and Zheng, J.
- Abstract
Copyright 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 14(9), 092703_1-092703_5, 2007 and may be found at http://dx.doi.org/10.1063/1.2774001
167. Photon accelerator
- Author
-
Wilks, S. C., primary, Dawson, J. M., additional, Mori, W. B., additional, Katsouleas, T., additional, and Jones, M. E., additional
- Published
- 1989
- Full Text
- View/download PDF
168. Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma
- Author
-
Wilks, S. C., primary, Dawson, J. M., additional, and Mori, W. B., additional
- Published
- 1988
- Full Text
- View/download PDF
169. QED-driven laser absorption.
- Author
-
Levy, M. C., Blackburn, T. G., Ratan, N., Sadler, J., Ridgers, C. P., Kasim, M., Cuervorst, L., Holloway, J., Baring, M. G., Bell, A. R., Glenzer, S. H., Gregori, G., Ilderton, A., Marklund, M., Tabak, M., Wilks, S. C., and Norreys, P. A.
- Published
- 2017
170. The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence.
- Author
-
Perkins, L. J., Logan, B. G., Rosen, M. D., Perry, M. D., Rubia, T. Diaz de la, Ghoniem, N. M., Ditmire, T., Springer, P. T., and Wilks, S. C.
- Published
- 2000
- Full Text
- View/download PDF
171. UNTITLED.
- Author
-
WILKS, S. C.
- Published
- 1832
172. THE MOTHER OF THE LATE REV. BASIL WOOD.
- Author
-
Wilks, S. C.
- Published
- 1845
173. Production of high fluence laser beams using ion wave plasma optics.
- Author
-
Kirkwood, R. K., Poole, P. L., Kalantar, D. H., Chapman, T. D., Wilks, S. C., Edwards, M. R., Turnbull, D. P., Michel, P., Divol, L., Fisch, N. J., Norreys, P., Rozmus, W., Bude, J., Blue, B. E., Fournier, K. B., Van Wonterghem, B. M., and MacKinnon, A.
- Subjects
- *
ION acoustic waves , *LASER beams , *OPTICS , *STIMULATED Raman scattering , *ION beams - Abstract
Optical components for laser beams with high peak and averaged powers are being developed worldwide using stimulated plasma scattering that occurs when plasmas interact with intense, coherent light. After decades of pursuit of pulse compressors, mirrors, and other plasma based components that can be created by stimulated scattering from electron density perturbations forming on ultra-short time scales (e.g., via Stimulated Raman Scattering), more recent work has produced optical components on longer time scales allowing ion motion as well [via Stimulated Brillouin Scattering (SBS)]. In the most recent work, ion wave plasma optics have had success in producing pulses of focusable coherent light with high energy and fluence by operating on ns time scales and now promise to enable numerous applications. Experiments have further shown that in some parameter regimes, even simple plasma response models can describe the output of such optics with sufficient accuracy that they can be used as engineering tools to design plasma optics for future applications, as is already being done to control power deposition in fusion targets. In addition, the development of more sophisticated models promises to enable still higher performance from SBS driven plasma optical components under a wider range of conditions. The present status and most promising directions for future development of ion wave plasma optic techniques are discussed here. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
174. Characterizing the acceleration time of laser-driven ion acceleration with data-informed neural networks.
- Author
-
Djordjević, B Z, Kemp, A J, Kim, J, Ludwig, J, Simpson, R A, Wilks, S C, Ma, T, and Mariscal, D A
- Subjects
- *
PHYSIOLOGICAL effects of acceleration , *LASER plasmas , *ION energy , *LEARNING ability , *IONS - Abstract
Peak ion energy is an important figure-of-merit in short-pulse, laser-driven ion acceleration and is dependent on an associated acceleration time. Standard metrics for these quantities depend on analytical results such as the self-similar fluid model or empirical models based on relatively small experimental and simulation datasets. In this work we attempt to use a data-informed neural network (NN) as a surrogate model for a large ensemble of PIC simulations to investigate an effective acceleration time. We explore the application of a stacked convolutional and recurrent NN architecture for improved regression by incorporating the time dependencies of the data into the training process. Of particular note is how pretraining a network on lower fidelity data, e.g. 1D analytical results, greatly improves the network's ability to learn more complex, higher fidelity data. Finally, the dependency of the acceleration time on various laser and plasma parameters is explored. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
175. Modeling laser-driven ion acceleration with deep learning.
- Author
-
Djordjević, B. Z., Kemp, A. J., Kim, J., Simpson, R. A., Wilks, S. C., Ma, T., and Mariscal, D. A.
- Subjects
- *
DEEP learning , *ION energy , *MACHINE learning , *IONS - Abstract
Developments in machine learning promise to ameliorate some of the challenges of modeling complex physical systems through neural-network-based surrogate models. High-intensity, short-pulse lasers can be used to accelerate ions to mega-electronvolt energies, but to model such interactions requires computationally expensive techniques such as particle-in-cell simulations. Multilayer neural networks allow one to take a relatively sparse ensemble of simulations and generate a surrogate model that can be used to rapidly search the parameter space of interest. In this work, we created an ensemble of over 1,000 simulations modeling laser-driven ion acceleration and developed a surrogate to study the resulting parameter space. A neural-network-based approach allows for rapid feature discovery not possible for traditional parameter scans given the computational cost. A notable observation made during this study was the dependence of ion energy on the pre-plasma gradient length scale. While this methodology harbors great promise for ion acceleration, it has ready application to all topics in which large-scale parameter scans are restricted by significant computational cost or relatively large, but sparse, domains. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
176. Erratum: "First demonstration of ARC-accelerated proton beams at the National Ignition Facility" [Physics of Plasmas 26, 043110 (2019)].
- Author
-
Mariscal, D., Ma, T., Wilks, S. C., Kemp, A. J., Williams, G. J., Michel, P., Chen, H., Patel, P. K., Remington, B. A., Bowers, M., Pelz, L., Hermann, M. R., Hsing, W., Martinez, D., Sigurdsson, R., Prantil, M., Conder, A., Lawson, J., Hamamoto, M., and Di Nicola, P.
- Subjects
- *
PLASMA physics , *PROTON beams , *FACILITIES , *GOVERNMENT laboratories - Published
- 2020
- Full Text
- View/download PDF
177. Hybrid particle-in-cell simulations of laser-driven plasma interpenetration, heating, and entrainment.
- Author
-
Higginson, D. P., Amendt, P., Meezan, N., Riedel, W., Rinderknecht, H. G., Wilks, S. C., and Zimmerman, G.
- Subjects
- *
PLASMA physics , *HYBRID computer simulation , *STAGNATION flow , *PLASMA flow , *LARGE scale systems , *ENTRAINMENT (Physics) , *MAGNETOHYDRODYNAMIC generators , *STELLARATORS - Abstract
Kinetic-ion, quasineutral, fluid-electron particle-in-cell simulations of interpenetrating carbon–carbon plasma flows in 2D RZ cylindrical geometry are presented. The simulations are initialized with solid density targets that are subsequently irradiated by 1014 W/cm2 intensity lasers using a raytracing package. The ablation, interpenetration, heating, slowing, entrainment, and stagnation of the plasma flows evolve self-consistently within the code. The particle density, velocity phase space, and fits to the velocity distribution functions are used, along with analytical collisional stopping rates, to interpret the dynamics of the flow evolution. Comparisons to multifluid simulations are described and used to highlight ion-kinetic effects in the setup. Synthetic Thomson scattering diagnostic signals are generated using detailed knowledge of the plasma distribution functions. The large scale of the system, 1 × 1 mm for 2 ns, and the detailed dynamics extracted demonstrate that such hybrid codes are powerful tools for the design and evaluation of laboratory-scale high-energy-density plasma physics experiments. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
178. Kinetic effects on neutron generation in moderately collisional interpenetrating plasma flows.
- Author
-
Higginson, D. P., Ross, J. S., Ryutov, D. D., Fiuza, F., Wilks, S. C., Hartouni, E. P., Hatarik, R., Huntington, C. M., Kilkenny, J., Lahmann, B., Li, C. K., Link, A., Petrasso, R. D., Pollock, B. B., Remington, B. A., Rinderknecht, H. G., Sakawa, Y., Sio, H., Swadling, G. F., and Weber, S.
- Subjects
- *
NEUTRONS , *PLASMA flow , *COLLISIONAL plasma , *TIME-of-flight spectroscopy , *COMPUTER simulation , *ION mobility - Abstract
Collisional kinetic modifications of ion distributions in interpenetrating flows are investigated by irradiating two opposing targets, either CD/CD or CD/CH, on the National Ignition Facility. In the CD/CD case, neutron time-of-flight diagnostics are successfully used to infer the ion temperature, 5–6 keV, and velocity, 500 km/s per flow, of the flows using a multi-fluid approximation of beam-beam nuclear fusion. These values are found to be in agreement with simulations and other diagnostics. However, for CD/CH, the multi-fluid assumption breaks down, as fusion is quasi-thermonuclear in this case and thus more dependent on the details of the ion velocity distribution. Using kinetic-ion, hydrodynamic-electron, and hybrid particle-in-cell modeling, this is found to be partially due to a skewed deviation from a Maxwellian in the ion velocity distribution function resulting from ion-ion collisions. This skew causes a downshift in the mean neutron velocity that partially resolves the observation in the CD/CH case. We note that the discrepancy is not completely resolved via collisional effects alone and may be a signature of collisionless electromagnetic interactions such as the Weibel-filamentation instability. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
179. Measurements of ion velocity separation and ionization in multi-species plasma shocks.
- Author
-
Rinderknecht, Hans G., Park, H.-S., Ross, J. S., Amendt, P. A., Wilks, S. C., Katz, J., Hoffman, N. M., Kagan, G., Vold, E. L., Keenan, B. D., Simakov, A. N., and Chacón, L.
- Subjects
- *
COLLISIONAL plasma , *ION migration & velocity , *PLASMA shock waves , *FLOW velocity , *THOMSON scattering , *ION temperature - Abstract
The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks ( M ∼ 6 ) propagating through low-density ( ρ ∼ 0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. The forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
180. A plasma amplifier to combine multiple beams at NIF.
- Author
-
Kirkwood, R. K., Turnbull, D. P., Chapman, T., Wilks, S. C., Rosen, M. D., London, R. A., Pickworth, L. A., Colaitis, A., Dunlop, W. H., Poole, P., Moody, J. D., Strozzi, D. J., Michel, P. A., Divol, L., Landen, O. L., MacGowan, B. J., Van Wonterghem, B. M., Fournier, K. B., and Blue, B. E.
- Subjects
- *
LASER plasmas , *PLASMA flow , *ENERGY transfer , *NUCLEAR fusion , *BRILLOUIN scattering - Abstract
Combining laser beams in a plasma is enabled by seeded stimulated Brillouin scattering which allows cross-beam energy transfer (CBET) to occur and re-distributes the energy between beams that cross with different incident angles and small differences in wavelength [Kirkwood
et al. Phys. Plasmas4 , 1800 (1997)]. Indirect-drive implosions at the National Ignition Facility (NIF) [Haynamet al. Appl. Opt.46 , 3276–3303 (2007)] have controlled drive symmetry by using plasma amplifiers to transfer energy between beams [Kirkwoodet al. , Plasma Phys. Controlled Fusion55 , 103001 (2013); Lindlet al. , Phys. Plasmas21 , 020501 (2014); and Hurricaneet al. Nature506 , 343–348 (2014)]. In this work, we show that the existing models are well enough validated by experiments to allow a design of a plasma beam combiner that, once optimized, is expected to produce a pulse of light in a single beam with the energy greatly enhanced over existing sources. The scheme combines up to 61 NIF beams with 120 kJ of available energy into a single f/20 beam with a 1 ns pulse duration and a 351 nm wavelength by both resonant and off-resonance CBET. Initial experiments are also described that have already succeeded in producing a 4 kJ, 1 ns pulse in a single beam by combination of up to eight incident pump beams containing <1.1 kJ/beam, which are maintained near resonance for CBET in a plasma that is formed by 60 pre-heating beams [Kirkwoodet al. , Nat. Phys.14 , 80 (2018)]. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
181. Enhancement and control of laser wakefields via a backward Raman amplifier.
- Author
-
Ludwig, J. D., Masson-Laborde, P.-E., Hüller, S., Rozmus, W., and Wilks, S. C.
- Subjects
- *
LASER plasma accelerators , *RELATIVITY (Physics) , *COMPUTER simulation , *ELECTRONIC amplifiers , *RAMAN effect - Abstract
The Backward Raman Amplifier (BRA) is proposed as a possible scheme for improving laser driven plasma wakefields. One- and two-dimensional particle-in-cell code simulations and a 3-Wave coupling model are presented and compared to demonstrate how the BRA can be applied to the laser wakefield accelerator (LWFA) in the non-relativistic regime to counteract limitations such as pump depletion and diffraction. This article provides a discussion on optimal parameters for the combination of BRA and LWFA and a prescription for a BRA pump frequency chirp to ensure coupling beyond the particle dephasing limit. Simulation results demonstrate a reduction or alleviation of the effects of diffraction and an increase in wake amplitude and sustainability and provide direct insights into new methods of controlling plasma wakes in LWFA and other applications. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
182. Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems.
- Author
-
Beckwith, M. A., Jiang, S., Schropp, A., Fernandez-Pañella, A., Rinderknecht, H. G., Wilks, S. C., Fournier, K. B., Galtier, E. C., Xing, Z., Granados, E., Gamboa, E., Glenzer, S. H., Heimann, P., Zastrau, U., Cho, B. I., Eggert, J. H., Collins, G. W., and Ping, Y.
- Subjects
- *
X-ray absorption , *IONS , *DIFFUSION , *AEROGELS , *FLUORESCENCE spectroscopy - Abstract
Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe2O3 and SiO2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating with simultaneous fluorescence spectra for temperature determination. The results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
183. Magnetic field production via the Weibel instability in interpenetrating plasma flows.
- Author
-
Huntington, C. M., Manuel, M. J.-E., Ross, J. S., Wilks, S. C., Fiuza, F., Rinderknecht, H. G., Park, H.-S., Gregori, G., Higginson, D. P., Park, J., Pollock, B. B., Remington, B. A., Ryutov, D. D., Ruyer, C., Sakawa, Y., Sio, H., Spitkovsky, A., Swadling, G. F., Takabe, H., and Zylstra, A. B.
- Subjects
- *
PLASMA instabilities , *PLASMA flow , *MAGNETIC fields , *PLASMA shock waves , *ELECTROMAGNETIC fields - Abstract
Many astrophysical systems are effectively "collisionless," that is, the mean free path for collisions between particles is much longer than the size of the system. The absence of particle collisions does not preclude shock formation, however, as shocks can be the result of plasma instabilities that generate and amplify electromagnetic fields. The magnetic fields required for shock formation may either be initially present, for example, in supernova remnants or young galaxies, or they may be self-generated in systems such as gamma-ray bursts (GRBs). In the case of GRB outflows, the Weibel instability is a candidate mechanism for the generation of sufficiently strong magnetic fields to produce shocks. In experiments on the OMEGA Laser, we have demonstrated a quasicollisionless system that is optimized for the study of the non-linear phase of Weibel instability growth. Using a proton probe to directly image electromagnetic fields, we measure Weibelgenerated magnetic fields that grow in opposing, initially unmagnetized plasma flows. The collisionality of the system is determined from coherent Thomson scattering measurements, and the data are compared to similar measurements of a fully collisionless system. The strong, persistent Weibel growth observed here serves as a diagnostic for exploring large-scale magnetic field amplification and the microphysics present in the collisional-collisionless transition. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
184. High-contrast laser acceleration of relativistic electrons in solid cone-wire targets.
- Author
-
Higginson, D. P., Link, A., Sawada, H., Wilks, S. C., Bartal, T., Chawla, S., Chen, C. D., Flippo, K. A., Jarrott, L. C., Key, M. H., McLean, H. S., Patel, P. K., Pérez, F., Wei, M. S., and Beg, F. N.
- Subjects
- *
RELATIVISTIC electrons , *PLASMA gases , *COPPER wire , *ELECTRON accelerators , *CHEMICAL precursors , *COUPLING reactions (Chemistry) - Abstract
The consequences of small scale-length precursor plasmas on high-intensity laser-driven relativistic electrons are studied via experiments and simulations. Longer scale-length plasmas are shown to dramatically increase the efficiency of electron acceleration, yet, if too long, they reduce the coupling of these electrons into the solid target. Evidence for the existence of an optimal plasma scale-length is presented and estimated to be from 1 to 5 μm. Experiments on the Trident laser (I = 5 × 1019 W/cm²) diagnosed via Kα emission from Cu wires attached to Au cones are quantitively reproduced using 2D particle-in-cell simulations that capture the full temporal and spatial scale of the nonlinear laser interaction and electron transport. The simulations indicate that 32 % ± 8%(6.5% ± 2%) of the laser energy is coupled into electrons of all energies (1-3 MeV) reaching the inner cone tip and that, with an optimized scale-length, this could increase to 35% (9%). [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
185. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging.
- Author
-
Rosenberg, M. J., Séguin, F. H., Amendt, P. A., Atzeni, S., Rinderknecht, H. G., Hoffman, N. M., Zylstra, A. B., Li, C. K., Sio, H., Johnson, M. Gatu, Frenje, J. A., Petrasso, R. D., Glebov, V. Yu., Stoeckl, C., Seka, W., Marshall, F. J., Delettrez, J. A., Sangster, T. C., Betti, R., and Wilks, S. C.
- Subjects
- *
SHOCK waves , *INERTIAL confinement fusion , *EMPIRICAL research , *KNUDSEN flow , *HYDRODYNAMICS - Abstract
The significance and nature of ion kinetic effects in D3He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK~3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
186. Species separation and kinetic effects in collisional plasma shocks.
- Author
-
Bellei, C., Rinderknecht, H., Zylstra, A., Rosenberg, M., Sio, H., Petrasso, R., Wilks, S. C., and Amendt, P. A.
- Subjects
- *
PLASMA shock waves , *THEORY of wave motion , *ELECTRIC fields , *ION temperature , *GEOMETRY - Abstract
The properties of collisional shock waves propagating in uniform plasmas are studied with ionkinetic calculations, in both slab and spherical geometry and for the case of one and two ion species. Despite the presence of an electric field at the shock front-and in contrast to the case where an interface is initially present [C. Bellei et al., Phys. Plasmas 20, 044702 (2013)]- essentially no ion reflection at the shock front is observed due to collisions, with a probability of reflection ≲10-4 for the cases presented. A kinetic two-ion-species spherical convergent shock is studied in detail and compared against an average-species calculation, confirming effects of species separation and differential heating of the ion species at the shock front. The effect of different ion temperatures on the DT and D3He fusion reactivity is discussed in the fluid limit and is estimated to be moderately important. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
187. Response to 'Comment on 'Species separation in inertial confinement fusion fuels'' [Phys. Plasmas 20, 044701 (2013)].
- Author
-
Bellei, C., Amendt, P. A., Wilks, S. C., Casey, D. T., Li, C. K., Petrasso, R., and Welch, D. R.
- Subjects
- *
SEPARATION (Technology) , *INERTIAL confinement fusion , *FUSION reactor fuel , *CATEGORIES (Mathematics) , *CONTROLLED fusion , *NUCLEAR fuels - Abstract
The claims made in the preceding Comment are categorically refuted. Further evidence to support the conclusions of our original paper is herein provided. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
188. Species separation in inertial confinement fusion fuels.
- Author
-
Bellei, C., Amendt, P. A., Wilks, S. C., Haines, M. G., Casey, D. T., Li, C. K., Petrasso, R., and Welch, D. R.
- Subjects
- *
INERTIAL confinement fusion , *THERMONUCLEAR fuels , *SIMULATION methods & models , *SHOCK waves , *THEORY of wave motion , *PHYSICS experiments , *DEUTERIUM ions - Abstract
It is shown by means of multi-fluid particle-in-cell simulations that convergence of the spherical shock wave that propagates through the inner gas of inertial confinement fusion-relevant experiments is accompanied by a separation of deuterium (D) and tritium (T) ions across the shock front. Deuterons run ahead of the tritons due to their lower mass and higher charge-to-mass ratio and can reach the center several tens of picoseconds before the tritons. The rising edge of the DD and TT fusion rate is also temporally separated by the same amount, which should be an observable in experiments and would be a direct proof of the 'stratification conjecture' on the shock front [Amendt et al., Phys. Plasmas 18, 056308 (2011)]. Moreover, dephasing of the D and T shock components in terms of density and temperature leads to a degradation of the DT fusion yield as the converging shock first rebounds from the fuel center (shock yield). For the parameters of this study, the second peak in the fusion yield (compression yield) is strongly dependent on the choice of the flux limiter. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
189. Structure and Dynamics of Colliding Plasma Jets.
- Author
-
C. K. Li, Ryutov, D. D., S. X. Hu, Rosenberg, M. J., Zylstra, A. B., Séguin, F. H., Frenje, J. A., Casey, D. T., Gatu Johnson, M., Manuel, M. J.-E., Rinderknecht, H. G., Petrasso, R. D., Amendt, P. A., Park, H. S., Remington, B. A., Wilks, S. C., Betti, R., Froula, D. H., Knauer, J. P., and Meyerhofer, D. D.
- Subjects
- *
PLASMA jets , *MAGNETIC fields , *REYNOLDS number , *PLASMA flow , *PROTON detection , *OHM'S law - Abstract
Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model's prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te × ∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be "frozen in" the plasma (due to high magnetic Reynolds number ReM ∼ 5 X 104) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
190. Proton pinhole imaging on the National Ignition Facility.
- Author
-
Zylstra, A. B., Park, H.-S., Ross, J. S., Fiuza, F., Frenje, J. A., Higginson, D. P., Huntington, C., Li, C. K., Petrasso, R. D., Pollock, B., Remington, B., Rinderknecht, H. G., Ryutov, D., Séguin, F. H., Turnbull, D., and Wilks, S. C.
- Subjects
- *
MICROPHYSICS , *PLASMA astrophysics , *DEUTERIUM , *DECONVOLUTION of digital images - Abstract
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
191. X-ray spectroscopy of buried layer foils irradiated at laser intensities in excess of 1020 W/cm2.
- Author
-
Chen, S. N., Patel, P. K., Chung, H.-K., Kemp, A. J., Le Pape, S., Maddox, B. R., Wilks, S. C., Stephens, R. B., and Beg, F. N.
- Subjects
- *
X-ray spectroscopy , *PLASMA gases , *PLASMA waves , *PLASMA dynamics , *MAGNETOHYDRODYNAMICS - Abstract
Observations of a rapid decrease in thermal temperature as a function of depth of solid targets irradiated with a short pulse, ultrahigh-intensity laser are reported. This phenomenon is investigated using the Titan short pulse laser with intensities greater than 1020 W/cm2 interacting with buried layer targets. The longitudinal temperature profile is determined by measuring K-shell spectra from a 0.4 μm copper tracer layer placed at various depths (i.e., 0–1.5 μm) within the 2.4 μm thick target. It is observed that the line ratios (He-like K-shell lines) as a function of temperature require a consideration of at least three parameters to analyze the K-shell spectra: hot electron population, time-dependent plasma conditions, and opacity. Here, the study of the effect of these three parameters on measured spectra in the short pulse high intensity laser-matter interactions using the atomic model FLYCHK [H.-K. Chung et al., High Energy Density Phys. 1, 3 (2005)] is presented. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
192. Interpretation of proton radiography experiments of hohlraums with three-dimensional simulations.
- Author
-
Masson-Laborde, P.-E., Laffite, S., Li, C. K., Wilks, S. C., Riquier, R., Petrasso, R. D., Kluth, G., and Tassin, V.
- Subjects
- *
INERTIAL confinement fusion , *PROTONS , *RADIOGRAPHY , *ELECTRIC fields , *RADIATION - Abstract
Proton radiography experiments of laser-irradiated hohlraums performed at the OMEGA laser facility are analyzed using three-dimensional (3D) hydrodynamic simulations coupled to a proton trajectography package. Experiments with three different laser irradiation patterns were performed, and each produced a distinct proton image. By comparing these results with synthetic proton images obtained by sending protons through plasma profiles in the hohlraum obtained from 3D radiation hydrodynamic simulations, it is found that the simulated images agree favorably with the experimental images when electric fields, due to the electron pressure gradients that arise from 3D structures occurring during plasma expansion, are included. These comparisons provide quantitative estimates of the electric field present inside the hohlraums. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
193. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock.
- Author
-
Rinderknecht, Hans G., Park, H.-S., Ross, J. S., Amendt, P. A., Higginson, D. P., Wilks, S. C., Haberberger, D., Katz, J., Froula, D. H., Hoffman, N. M., Kagan, G., Keenan, B. D., and Vold, E. L.
- Subjects
- *
PLASMA shock waves , *THOMSON scattering - Abstract
The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M~11) propagating through a low-density (ρ~0.01 mg/cc) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
194. Nuclear excitation by electronic transition of 235U.
- Author
-
Chodash, P. A., Burke, J. T., Norman, E. B., Wilks, S. C., Casperson, R. J., Fisher, S. E., Holliday, K. S., Jeffries, J. R., and Wakeling, M. A.
- Subjects
- *
PHYSICS periodicals , *EXCITED states , *NUCLEAR excitation , *URANIUM isotopes - Abstract
Background: Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results. Purpose: An experiment was performed to determine whether NEET of 235U occurs and to determine its excitation rate. Method: A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 790 mJ and a pulse width of 9 ns was used to generate a uranium plasma. The plasma was collected on a catcher plate and electrons from the catcher plate were accelerated and focused onto a microchannel plate detector. An observation of a decay with a 26-min half-life would suggest the creation of 235mU and the possibility that NEET of 235U occurred. Results: A 26-min decay consistent with the decay of 235mU was not observed and there was no evidence that NEET occurred. An upper limit for the NEET rate of U235 was determined to be λNEET<1.8×10-4 s-1, with a confidence level of 68.3%. Conclusions: The upper limit determined from this experiment is consistent with most of the past measurements. Discrepancies between this experiment and past measurements can be explained by assuming that past experiments misinterpreted the data. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
195. Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Allen A, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Archuleta TN, Arend M, Arnold P, Arnold T, Arsenlis A, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AAS, Aybar N, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger RL, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Boyle D, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs R, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman TD, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christiansen NS, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins GW, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Danly C, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Do A, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, Drury O, DuBois DF, DuBois PF, Dunham G, Durocher M, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Fehrenbach T, Feit M, Felker B, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geddes CGR, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani FR, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Higginson DP, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins LF, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Ivanovich I, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Krauland CM, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kur E, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lagin L, Lahmann B, Lairson B, Landen OL, Land T, Lane M, Laney D, Langdon AB, Langenbrunner J, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Manuel MJ, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez JI, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora RC, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Oesterle AL, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedretti A, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phillion D, Phipps TJ, Piceno E, Pickworth L, Ping Y, Pino J, Piston K, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo PW, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen MD, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmit PF, Smidt JM, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Smith R, Schölmerich M, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanley J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CH, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Stutz J, Summers L, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Wharton KB, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmann K, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff PJ, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Yu J, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.
- Published
- 2024
- Full Text
- View/download PDF
196. A flexible proton beam imaging energy spectrometer (PROBIES) for high repetition rate or single-shot high energy density (HED) experiments (invited).
- Author
-
Mariscal DA, Djordjević BZ, Anirudh R, Bremer T, Campbell PC, Feister S, Folsom E, Grace ES, Hollinger R, Jacobs SA, Kailkhura B, Kalantar D, Kemp AJ, Kim J, Kur E, Liu S, Ludwig J, Morrison J, Nedbailo R, Ose N, Park J, Rocca JJ, Scott GG, Simpson RA, Song H, Spears B, Sullivan B, Swanson KK, Thiagarajan J, Wang S, Williams GJ, Wilks SC, Wyatt M, Van Essen B, Zacharias R, Zeraouli G, Zhang J, and Ma T
- Abstract
The PROBIES diagnostic is a new, highly flexible, imaging and energy spectrometer designed for laser-accelerated protons. The diagnostic can detect low-mode spatial variations in the proton beam profile while resolving multiple energies on a single detector or more. When a radiochromic film stack is employed for "single-shot mode," the energy resolution of the stack can be greatly increased while reducing the need for large numbers of films; for example, a recently deployed version allowed for 180 unique energy measurements spanning ∼3 to 75 MeV with <0.4 MeV resolution using just 20 films vs 180 for a comparable traditional film and filter stack. When utilized with a scintillator, the diagnostic can be run in high-rep-rate (>Hz rate) mode to recover nine proton energy bins. We also demonstrate a deep learning-based method to analyze data from synthetic PROBIES images with greater than 95% accuracy on sub-millisecond timescales and retrained with experimental data to analyze real-world images on sub-millisecond time-scales with comparable accuracy.
- Published
- 2023
- Full Text
- View/download PDF
197. Dual-energy fast neutron imaging using tunable short-pulse laser-driven sources.
- Author
-
Williams GJ, Aufderheide M, Champley KM, Djordjević BZ, Ma T, Ryan C, Simpson RA, and Wilks SC
- Abstract
A novel dual-energy fast neutron imaging technique is presented using short-pulse laser-driven neutron sources to leverage their inherent adaptive spectral control to enable 3D volume segmentation and reconstruction. Laser-accelerated ion beams incident onto secondary targets create directional, broadband, MeV-class neutrons. Synthetic radiographs are produced of multi-material objects using ion and neutron spectra derived from analytic and numerical models. It is demonstrated that neutron images generated from small changes to the neutron spectra, controlled by altering the initial laser conditions, are sufficient to isolate materials with differing attenuation coefficients. This is first demonstrated using a simplistic combinatorial isolation method and then by employing more advanced reconstruction algorithms to reduce artifacts and generate a segmentation volume of the constituent materials.
- Published
- 2022
- Full Text
- View/download PDF
198. Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Arend M, Arnold P, Arnold T, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AS, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger R, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman T, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins G, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, DuBois DF, DuBois PF, Dunham G, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Feit M, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani F, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins L, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lahmann B, Lairson B, Landen OL, Langenbrunner J, Lagin L, Land T, Lane M, Laney D, Langdon AB, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal C, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora R, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phipps TJ, Piceno E, Ping Y, Pickworth L, Pino J, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo P, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen M, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmitt MJ, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schölmerich M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CB, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Widmann K, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff J, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.
- Published
- 2022
- Full Text
- View/download PDF
199. Enhancements in laser-generated hot-electron production via focusing cone targets at short pulse and high contrast.
- Author
-
Rusby DR, King PM, Pak A, Lemos N, Kerr S, Cochran G, Pagano I, Hannasch A, Quevedo H, Spinks M, Donovan M, Link A, Kemp A, Wilks SC, Williams GJ, Manuel MJ, Gavin Z, Haid A, Albert F, Aufderheide M, Chen H, Siders CW, Macphee A, and Mackinnon A
- Abstract
We report on the increase in the accelerated electron number and energy using compound parabolic concentrator (CPC) targets from a short-pulse (∼150 fs), high-intensity (>10^{18} W/cm^{2}), and high-contrast (∼10^{8}) laser-solid interaction. We report on experimental measurements using CPC targets where the hot-electron temperature is enhanced up to ∼9 times when compared to planar targets. The temperature measured from the CPC target is 〈T_{e}〉=4.4±1.3 MeV. Using hydrodynamic and particle in cell simulations, we identify the primary source of this temperature enhancement is the intensity increase caused by the CPC geometry that focuses the laser, reducing the focal spot and therefore increasing the intensity of the laser-solid interaction, which is also consistent with analytic expectations for the geometrical focusing.
- Published
- 2021
- Full Text
- View/download PDF
200. Generating keV ion distributions for nuclear reactions at near solid-density using intense short-pulse lasers.
- Author
-
Kemp AJ, Wilks SC, Hartouni EP, and Grim G
- Abstract
Our understanding of a large range of astrophysical phenomena depends on a precise knowledge of charged particle nuclear reactions that occur at very low rates, which are difficult to measure under relevant plasma conditions. Here, we describe a method for generating dense plasmas at effective ion temperatures >20 keV, sufficient to induce measurable charged particle nuclear reactions. Our approach uses ultra-intense lasers to drive micron-sized, encapsulated nanofoam targets. Energetic electrons generated in the intense laser interaction pass through the foam, inducing a rapid expansion of the foam ions; this results in a hot, near-solid density plasma. We present the laser and target conditions necessary to achieve these conditions and illustrate the system performance using three-dimensional particle-in-cell simulations, outline potential applications and calculate expected nuclear reaction rates in the D(d,n) and
12 C(p,γ) systems assuming CD, or CH aerogel foams.- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.